8,124 research outputs found

    Monte Carlo Methods in Statistics

    Full text link
    Monte Carlo methods are now an essential part of the statistician's toolbox, to the point of being more familiar to graduate students than the measure theoretic notions upon which they are based! We recall in this note some of the advances made in the design of Monte Carlo techniques towards their use in Statistics, referring to Robert and Casella (2004,2010) for an in-depth coverage.Comment: Entry submitted to the International Handbook of Statistical Method

    On computational tools for Bayesian data analysis

    Full text link
    While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert Elicitation" edited by Klaus Bocker, 23 pages, 9 figure

    Bayesian Poisson Log-Bilinear Mortality Projections

    Get PDF
    Mortality projections are major concerns for public policy, social security and private insurance. This paper implements a Bayesian log-bilinear Poisson regression model to forecast mortality. Computations are carried out using Markov Chain Monte Carlo methods in which the degree of smoothing is learnt from the data. Comparisons are made with the approach proposed by Brouhns, Denuit & Vermunt (2002a,b), as well as with the original model of Lee & Carter (1992)

    Pseudo-Marginal Bayesian Inference for Gaussian Processes

    Get PDF
    The main challenges that arise when adopting Gaussian Process priors in probabilistic modeling are how to carry out exact Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.Comment: 14 pages double colum

    Simulation in Statistics

    Full text link
    Simulation has become a standard tool in statistics because it may be the only tool available for analysing some classes of probabilistic models. We review in this paper simulation tools that have been specifically derived to address statistical challenges and, in particular, recent advances in the areas of adaptive Markov chain Monte Carlo (MCMC) algorithms, and approximate Bayesian calculation (ABC) algorithms.Comment: Draft of an advanced tutorial paper for the Proceedings of the 2011 Winter Simulation Conferenc

    Bayesian Estimation of Inequalities with Non-Rectangular Censored Survey Data

    Full text link
    Synthetic indices are used in Economics to measure various aspects of monetary inequalities. These scalar indices take as input the distribution over a finite population, for example the population of a specific country. In this article we consider the case of the French 2004 Wealth survey. We have at hand a partial measurement on the distribution of interest consisting of bracketed and sometimes missing data, over a subsample of the population of interest. We present in this article the statistical methodology used to obtain point and interval estimates taking into account the various uncertainties. The inequality indices being nonlinear in the input distribution, we rely on a simulation based approach where the model for the wealth per household is multivariate. Using the survey data as well as matched auxiliary tax declarations data, we have at hand a quite intricate non-rectangle multidimensional censoring. For practical issues we use a Bayesian approach. Inference using Monte-Carlo approximations relies on a Monte-Carlo Markov chain algorithm namely the Gibbs sampler. The quantities interesting to the decision maker are taken to be the various inequality indices for the French population. Their distribution conditional on the data of the subsample are assumed to be normal centered on the design-based estimates with variance computed through linearization and taking into account the sample design and total nonresponse. Exogeneous selection of the subsample, in particular the nonresponse mechanism, is assumed and we condition on the adequate covariates

    Bayesian computational methods

    Full text link
    In this chapter, we will first present the most standard computational challenges met in Bayesian Statistics, focussing primarily on mixture estimation and on model choice issues, and then relate these problems with computational solutions. Of course, this chapter is only a terse introduction to the problems and solutions related to Bayesian computations. For more complete references, see Robert and Casella (2004, 2009), or Marin and Robert (2007), among others. We also restrain from providing an introduction to Bayesian Statistics per se and for comprehensive coverage, address the reader to Robert (2007), (again) among others.Comment: This is a revised version of a chapter written for the Handbook of Computational Statistics, edited by J. Gentle, W. Hardle and Y. Mori in 2003, in preparation for the second editio
    • …
    corecore