36,051 research outputs found

    Evolution of the Media Web

    Full text link
    We present a detailed study of the part of the Web related to media content, i.e., the Media Web. Using publicly available data, we analyze the evolution of incoming and outgoing links from and to media pages. Based on our observations, we propose a new class of models for the appearance of new media content on the Web where different \textit{attractiveness} functions of nodes are possible including ones taken from well-known preferential attachment and fitness models. We analyze these models theoretically and empirically and show which ones realistically predict both the incoming degree distribution and the so-called \textit{recency property} of the Media Web, something that existing models did not do well. Finally we compare these models by estimating the likelihood of the real-world link graph from our data set given each model and obtain that models we introduce are significantly more likely than previously proposed ones. One of the most surprising results is that in the Media Web the probability for a post to be cited is determined, most likely, by its quality rather than by its current popularity

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Characterizing and modeling the dynamics of online popularity

    Full text link
    Online popularity has enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems, the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and inter-event time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.Comment: 5 pages, 4 figures. Modeling part detailed. Final version published in Physical Review Letter

    DancingLines: An Analytical Scheme to Depict Cross-Platform Event Popularity

    Full text link
    Nowadays, events usually burst and are propagated online through multiple modern media like social networks and search engines. There exists various research discussing the event dissemination trends on individual medium, while few studies focus on event popularity analysis from a cross-platform perspective. Challenges come from the vast diversity of events and media, limited access to aligned datasets across different media and a great deal of noise in the datasets. In this paper, we design DancingLines, an innovative scheme that captures and quantitatively analyzes event popularity between pairwise text media. It contains two models: TF-SW, a semantic-aware popularity quantification model, based on an integrated weight coefficient leveraging Word2Vec and TextRank; and wDTW-CD, a pairwise event popularity time series alignment model matching different event phases adapted from Dynamic Time Warping. We also propose three metrics to interpret event popularity trends between pairwise social platforms. Experimental results on eighteen real-world event datasets from an influential social network and a popular search engine validate the effectiveness and applicability of our scheme. DancingLines is demonstrated to possess broad application potentials for discovering the knowledge of various aspects related to events and different media
    corecore