12,969 research outputs found
Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening
We present an calculation of the electronic and optical excitations of an
isolated polythiophene chain as well as of bulk polythiophene. We use the GW
approximation for the electronic self-energy and include excitonic effects by
solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain
screening in the case of bulk polythiophene drastically reduces both the
quasi-particle band gap and the exciton binding energies, but the optical gap
is hardly affected. This finding is relevant for conjugated polymers in
general.Comment: 4 pages, 1 figur
Pulling and Stretching a Molecular Wire to Tune its Conductance
A scanning tunnelling microscope is used to pull a polythiophene wire from a
Au(111) surface while measuring the current traversing the junction. Abrupt
current increases measured during the lifting procedure are associated to the
detachment of molecular sub-units, in apparent contradiction with the expected
exponential decrease of the conductance with wire length. \textit{Ab initio}
simulations reproduce the experimental data and demonstrate that this
unexpected behavior is due to release of mechanical stress in the wire, paving
the way to mechanically gated single-molecule electronic devices
Ab-initio prediction of the electronic and optical excitations in polythiophene: isolated chains versus bulk polymer
We calculate the electronic and optical excitations of polythiophene using
the GW approximation for the electronic self-energy, and include excitonic
effects by solving the electron-hole Bethe-Salpeter equation. Two different
situations are studied: excitations on isolated chains and excitations on
chains in crystalline polythiophene. The dielectric tensor for the crystalline
situation is obtained by modeling the polymer chains as polarizable line
objects, with a long-wavelength polarizability tensor obtained from the
ab-initio polarizability function of the isolated chain. With this model
dielectric tensor we construct a screened interaction for the crystalline case,
including both intra- and interchain screening. In the crystalline situation
both the quasi-particle band gap and the exciton binding energies are
drastically reduced in comparison with the isolated chain. However, the optical
gap is hardly affected. We expect this result to be relevant for conjugated
polymers in general.Comment: 15 pages including 4 figures; to appear in Phys. Rev. B, 6/15/200
A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo and electrochemical control
An electroactive nitrospiropyran-substituted polyterthiophene, 2-(3,3′′-dimethylindoline-6′-nitrobenzospiropyranyl)ethyl 4,4′′-didecyloxy-2,2′:5′,2′′-terthiophene-3′-acetate, has been synthesized for the first time. The spiropyran, incorporated into the polymer backbone by covalent attachment to the alkoxyterthiophene monomer units, leads to multiple coloured states as a result of both electrochemical isomerization of the spiropyran moiety to merocyanine forms as well as electrochemical oxidation of the polyterthiophene backbone and the merocyanine substituents. While electrochemical polymerization of the terthiophene monomer could occurs without the apparent oxidation of the spiropyran, the subsequent electrochemistry is complex and clearly involves this substituent. In order to understand this complex behaviour, the first detailed electrochemical study of the oxidation of the precursor spiropyran, 1-(2-hydroxyethyl)-3,3-dimethylindoline-6’-nitrobenzospiropyran, was undertaken, showing that, in solution, an irreversible electrochemical oxidation of the spiropyran occurs leading to reversible redox behaviour of at least two merocyanine isomers. With these insights, an extensive electrochemical and spectroelectrochemical study of the nitrospiropyran-substituted polyterthiophene films reveals an initial irreversible electrochemical oxidative ring opening of the spiropyran to oxidized merocyanine. Subsequent reduction and cyclic voltammetry of the resulting nitromerocyanine-substituted polyterthiophene film gives rise to the formation of both merocyanine π-dimers or oligomers and π-radical cation dimers, between polymer chains. Although merocyanine formation is not electrochemically reversible, the spiropyran can be photochemically regenerated, at least in part, through irradiation with visible light. SEM and AFM images support the conclusion that the bulky spiropyran substituent is electrochemically isomerizes to the planar merocyanine moiety affording a smoother polymer film. The conductivity of the freestanding polymer film was found to be 0.4 S cm-1
Intrazeolite synthesis of polythiophene chains
Adsorption of thiophene and 3-methylthiophene into the channel system of transition metal-containing zeolites Y and mordenite results in oxidative polymerization to give encapsulated chains of polythiophene and poly(3-methylthiophene)
A Parallel Iterative Method for Computing Molecular Absorption Spectra
We describe a fast parallel iterative method for computing molecular
absorption spectra within TDDFT linear response and using the LCAO method. We
use a local basis of "dominant products" to parametrize the space of orbital
products that occur in the LCAO approach. In this basis, the dynamical
polarizability is computed iteratively within an appropriate Krylov subspace.
The iterative procedure uses a a matrix-free GMRES method to determine the
(interacting) density response. The resulting code is about one order of
magnitude faster than our previous full-matrix method. This acceleration makes
the speed of our TDDFT code comparable with codes based on Casida's equation.
The implementation of our method uses hybrid MPI and OpenMP parallelization in
which load balancing and memory access are optimized. To validate our approach
and to establish benchmarks, we compute spectra of large molecules on various
types of parallel machines.
The methods developed here are fairly general and we believe they will find
useful applications in molecular physics/chemistry, even for problems that are
beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.Comment: 20 pages, 17 figures, 3 table
Optical absorption and electrical conductivity of electron acceptor doped poly-3-octylthiophene films
Optical absorption and electrical conductivity measurements of solution-doped poly-3-octylthiophene (P3OT) films were studied. Chloroform solutions of P3OT were doped with the organic electron-acceptors, 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ); and with the inorganic electron acceptor, ferric chloride (FeCl{dollar}\sb3{dollar}). Charge transfer was observed in P3OT solutions doped with FeCl{dollar}\sb3{dollar} and DDQ. TCNQ-doped solutions showed no optical evidence of charge transfer. Thin films of the doped P3OT were examined at various doping levels. Spectroscopic and electrical conductivity measurements of P3OT films, doped with DDQ, TCNQ, and FeCl{dollar}\sb3{dollar}, at different doping levels, are presented. Optical absorption measurements provided information on the degree of charge transfer occurring for the various dopants. Electrical conductivity measurements showed that the conductivity of P3OT increased with the various dopants in the order of TCNQ {dollar}\u3c{dollar} DDQ {dollar}\u3c{dollar} FeCl{dollar}\sb3{dollar}, for the same dopant concentration level. Results are discussed in relation to the electrochemical properties of the prepared films and the structural properties of P3OT
- …
