11,470 research outputs found
The Role of Polysorbate 80 and HPβCD at the Air-Water Interface of IgG Solutions
Purpose: To test the hypothesis of surface displacement as the underlying mechanism for IgG stabilization by polysorbates and HPβCD against surface-induced aggregation. Methods: Adsorption/desorption-kinetics of IgG-polysorbate 80/-HPβCD were monitored. Maximum bubble pressure method was used for processes within seconds from surface formation. Profile analysis tensiometry was applied over long periods and to assess surface rheologic properties. Additionally, the kinetics of adsorption, desorption and surface displacement was followed by a double-capillary setup of the profile analysis tensiometer, allowing drop bulk exchange. Results: Weak surface activity for HPβCD vs. much higher surface activity for polysorbate 80 was shown. Protein-displacement when exceeding a polysorbate 80 concentration close to the CMC and a lack of protein displacement for HPβCD was observed. The drop bulk exchange experiments show IgG displacement by polysorbate 80 independent of the adsorption order. In contrast, HPβCD coexists with IgG at the air-water interface when the surface layer is built from a mixed IgG-HPβCD-solution. Incorporation of HPβCD in a preformed IgG-surface-layer does not occur. Conclusions: The results confirm surface displacement as the stabilization mechanism of polysorbate 80, but refute the frequently held opinion, that HPβCD stabilizes proteins against aggregation at the air-water interface in a manner comparable to non-ionic surfactant
Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions.
The effects of selected nonionic emulsifiers on the physicochemical characteristics of astaxanthin nanodispersions produced by an emulsification/evaporation technique were studied. The emulsifiers used were polysorbates (Polysorbate 20, Polysorbate 40, Polysorbate 60 and Polysorbate 80) and sucrose esters of fatty acids (sucrose laurate, palmitate, stearate and oleate). The mean particle diameters of the nanodispersions ranged from 70 nm to 150 nm, depending on the emulsifier used. In the prepared nanodispersions, the astaxanthin particle diameter decreased with increasing emulsifier hydrophilicity and decreasing carbon number of the fatty acid in the emulsifier structure. Astaxanthin nanodispersions with the smallest particle diameters were produced with Polysorbate 20 and sucrose laurate among the polysorbates and the sucrose esters, respectively. We also found that the Polysorbate 80- and sucrose oleate-stabilized nanodispersions had the highest astaxanthin losses (i.e., the lowest astaxanthin contents in the final products) among the nanodispersions. This work demonstrated the importance of emulsifier type in determining the physicochemical characteristics of astaxanthin nano-dispersions
Characterization and cytotoxicty of nanostructured lipid carriers formulated with olive oil, hydrogenated palm oil and polysorbate 80.
Nanostructured lipid carriers (NLC) composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Before NLC can be used as drug carriers, the cytotoxicity of their components must be ascertained. The cytotoxicity of solid lipids (trilaurin, palmitin, docosanoid acid, and hydrogenated palm oil [HPO]) and surfactants (Polysorbate 20, 80, and 85) were determined on BALB/c 3T3 cells. The HPO and Polysorbate 80 were least cytotoxic and used with olive oil in the formulation of NLC. The particle size, polydispersity index, zeta potential, specific surface area, and crystallinity index of the NLC were 61.14 nm, 0.461, -25.4 mV, and 49.07 m2 and 27.12% respectively, while the melting point was 4.3°C lower than of HPO. Unlike in serum-free, NLC incubated in fetal bovine serum-supplemented medium did not show particle growth, suggesting that serum proteins in medium inhibit nanoparticles aggregation. The study also showed that NLC was less toxic to BALB/c 3T3 cells than Polysorbate 80. Thus, NLC with olive oil, HPO, and Polysorbate 80 as components are potentially good drug carriers with minimal cytotoxicity on normal cells
Symurban Nanocrystals for Advanced Anti-Pollution Skincare
Several of most common dermatoses worldwide, e.g., psoriasis and atopic dermatitis, are worsened in their clinical picture when the skin is regularly exposed to an increased air pollution level, e.g., particulate matter. This is explainable by the activation of the aryl hydrocarbon receptor (AhR) in the skin, which results in an increased release of proinflammatory cytokines and matrix metalloproteinases. Symurban is a competitive AhR antagonist and thus allows the effective protection of skin. In order to improve its dermal bioavailability as a poorly soluble active agent (0.25 µg/mL), nanocrystals were prepared and evaluated. Nanocrystals are pure active crystals reduced in particle size to the submicron range of 100 to 1000 nm. They feature the properties of nanocrystals, such as increased saturation solubility and dissolution velocity, without having to be declared as nanomaterial. Production methods and parameters were systematically investigated. Wet bead milling at 2000 rpm for 30 min yielded the best results. A z-average of 280 nm was achieved for a 10% Symurban suspension with a polydispersity index of 0.20, indicating a narrow size distribution. For the long-term stabilization of the nanocrystal suspension, the performance of 15 surfactants of different categories and HLB values were investigated and evaluated. It was found that non-ionic surfactants in general were better able to stabilize the system than anionic or amphoteric surfactants. Highest stability of over 12 months at 25 °C was achieved with 2% Plantacare 810 UP, an ECOCERT surfactant with high skin tolerance. The suspension was also chemically long-term stable with >97% of remaining Symurban over 12 months. The saturation solubility of Symurban as nanocrystals was significantly increased from 0.25 to 2.9 μg/mL, which corresponds to a factor of >11. In a case study of one male volunteer with healthy skin conditions, penetration profiles of Symurban nanocrystal hydrogel and commercial anti-pollution serum containing an identical amount of Symurban were determined and compared. After 20 min of exposure, the relative Symurban concentration in the deeper skin layers (tape 19-30) was more than two times higher for nanocrystal hydrogel (16%) than the commercial serum (7%). These results suggest that nanocrystals are a promising delivery system for the poorly soluble anti-pollution agent Symurban
Vaccines in Current Culture: The HPV Vaccine Controversy
The use of vaccinations has drastically decreased mortality and morbidity rates related to infectious disease and has become an intrinsic part of modern health care. However, the fear of risks related to vaccines has been partially responsible for the decisions of many parents to delay or avoid vaccinating their children. The human papilloma virus (HPV) vaccine specifically is one of the most controversial vaccines in current culture due to reports of new onset or exacerbation of autoimmune diseases, infertility, and even death following its administration. This review synthesizes information regarding the relevance and safety of the HPV vaccine, as well as its efficacy in preventing cervical cancer and precancerous lesions. There appears to be a need for thorough education regarding concepts of immunity, infection, and vaccine function for those hesitant about receiving vaccines. Particularly regarding the HPV vaccine, practitioners should be familiar with common reasons for vaccine refusal and be prepared to respond with accurate information
Efficient chemotherapy of rat glioblastoma using Doxorubicin-loaded PLGA nanoparticles with different stabilizers
Background: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. Methodology: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. Conclusion: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations
Antibacterial Activity Ods Fractions of Marine Sponge Auletta SP. Against Mycobacterium Smegmatis
The marine sponge collected from tropical coral reefs in Manado North Sulawesi Indonesia was screened for antimicrobial activities. In the screening program to search for antituberculotic inhibitors, the result found that the ethanol extract ODS fractions 4 – 6 with concentration 5 mg/mL of an Indonesian marine sponge Auletta sp. was exhibited inhibitory activity against nonpathogenic Mycobacterium smegmatis at concentration 10, 20, 30µg/disc each fraction respectively. Fractions 4 - 5 with concentration 10µg/disc were most active, the inhibition zone 11, 12 mm, respectively
An Ultrahigh-throughput Microfluidic Platform for Single-cell Genome Sequencing.
Sequencing technologies have undergone a paradigm shift from bulk to single-cell resolution in response to an evolving understanding of the role of cellular heterogeneity in biological systems. However, single-cell sequencing of large populations has been hampered by limitations in processing genomes for sequencing. In this paper, we describe a method for single-cell genome sequencing (SiC-seq) which uses droplet microfluidics to isolate, amplify, and barcode the genomes of single cells. Cell encapsulation in microgels allows the compartmentalized purification and tagmentation of DNA, while a microfluidic merger efficiently pairs each genome with a unique single-cell oligonucleotide barcode, allowing >50,000 single cells to be sequenced per run. The sequencing data is demultiplexed by barcode, generating groups of reads originating from single cells. As a high-throughput and low-bias method of single-cell sequencing, SiC-seq will enable a broader range of genomic studies targeted at diverse cell populations
Self-assembly of Tween 80 micelles as nanocargos for oregano and trans-cinnamaldehyde plant-derived compounds
The self-assembly of Tween 80 (T80) micelles loaded with plant-based oregano essential oil (OR) and trans-cinnamaldehyde (TCA) was studied. The effect of different factors, including the surfactant to oil ratio, the presence of sodium chloride, thermal treatment, and dilution on their formation and physicochemical stability was evaluated. The creation of nano-cargos was confirmed by TEM. The self-associated structures had z-average droplet diameters of 92 to 337 nm without any energy input. Whereas addition of 10% (w/v) NaCl prevented the formation of oregano essential oil nano-assemblies of T80, swollen micelles containing TCA were successfully produced. Moreover, the OR or TCA loaded-micelles had only a slight droplet size variation upon thermal treatment. Ultimately, their antibacterial activity analysis against some food pathogens revealed that the encapsulation of OR and TCA within micelles crucially improved their antibacterial activity. These straightforward and cost-effective designed systems can be applicable in different products, including foods and agrochemicals
- …
