3,201 research outputs found

    Learning Material-Aware Local Descriptors for 3D Shapes

    Full text link
    Material understanding is critical for design, geometric modeling, and analysis of functional objects. We enable material-aware 3D shape analysis by employing a projective convolutional neural network architecture to learn material- aware descriptors from view-based representations of 3D points for point-wise material classification or material- aware retrieval. Unfortunately, only a small fraction of shapes in 3D repositories are labeled with physical mate- rials, posing a challenge for learning methods. To address this challenge, we crowdsource a dataset of 3080 3D shapes with part-wise material labels. We focus on furniture models which exhibit interesting structure and material variabil- ity. In addition, we also contribute a high-quality expert- labeled benchmark of 115 shapes from Herman-Miller and IKEA for evaluation. We further apply a mesh-aware con- ditional random field, which incorporates rotational and reflective symmetries, to smooth our local material predic- tions across neighboring surface patches. We demonstrate the effectiveness of our learned descriptors for automatic texturing, material-aware retrieval, and physical simulation. The dataset and code will be publicly available.Comment: 3DV 201

    Fast 3D keypoints detector and descriptor for view-based 3D objects recognition

    No full text
    International audienceIn this paper, we propose a new 3D object recognition method that employs a set of 3D keypoints extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range data produced by 3D sensor. Our novel 3D interest points approach relies on surface type classifi-cation and combines the Shape Index (SI) - curvedness(C) map with the Gaus-sian (H) - Mean (K) map. For each extracted keypoint, a local description using the point and its neighbors is computed by joining the Shape Index histogram and the normalized histogram of angles between normals. This new proposed descriptor IndSHOT stems from the descriptor CSHOT (Color Signature of Histograms of OrienTations) which is based on the definition of a local, robust and invariant Reference Frame RF. This surface patch descriptor is used to find the correspondences between query-model view pairs in effective and robust way. Experimental results on Kinect based datasets are presented to validate the proposed approach in view based 3D object recognition

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs
    • …
    corecore