10,816 research outputs found

    Relative fixed-width stopping rules for Markov chain Monte Carlo simulations

    Full text link
    Markov chain Monte Carlo (MCMC) simulations are commonly employed for estimating features of a target distribution, particularly for Bayesian inference. A fundamental challenge is determining when these simulations should stop. We consider a sequential stopping rule that terminates the simulation when the width of a confidence interval is sufficiently small relative to the size of the target parameter. Specifically, we propose relative magnitude and relative standard deviation stopping rules in the context of MCMC. In each setting, we develop sufficient conditions for asymptotic validity, that is conditions to ensure the simulation will terminate with probability one and the resulting confidence intervals will have the proper coverage probability. Our results are applicable in a wide variety of MCMC estimation settings, such as expectation, quantile, or simultaneous multivariate estimation. Finally, we investigate the finite sample properties through a variety of examples and provide some recommendations to practitioners.Comment: 24 page

    Sparse Volterra and Polynomial Regression Models: Recoverability and Estimation

    Full text link
    Volterra and polynomial regression models play a major role in nonlinear system identification and inference tasks. Exciting applications ranging from neuroscience to genome-wide association analysis build on these models with the additional requirement of parsimony. This requirement has high interpretative value, but unfortunately cannot be met by least-squares based or kernel regression methods. To this end, compressed sampling (CS) approaches, already successful in linear regression settings, can offer a viable alternative. The viability of CS for sparse Volterra and polynomial models is the core theme of this work. A common sparse regression task is initially posed for the two models. Building on (weighted) Lasso-based schemes, an adaptive RLS-type algorithm is developed for sparse polynomial regressions. The identifiability of polynomial models is critically challenged by dimensionality. However, following the CS principle, when these models are sparse, they could be recovered by far fewer measurements. To quantify the sufficient number of measurements for a given level of sparsity, restricted isometry properties (RIP) are investigated in commonly met polynomial regression settings, generalizing known results for their linear counterparts. The merits of the novel (weighted) adaptive CS algorithms to sparse polynomial modeling are verified through synthetic as well as real data tests for genotype-phenotype analysis.Comment: 20 pages, to appear in IEEE Trans. on Signal Processin

    Grafting for Combinatorial Boolean Model using Frequent Itemset Mining

    Full text link
    This paper introduces the combinatorial Boolean model (CBM), which is defined as the class of linear combinations of conjunctions of Boolean attributes. This paper addresses the issue of learning CBM from labeled data. CBM is of high knowledge interpretability but na\"{i}ve learning of it requires exponentially large computation time with respect to data dimension and sample size. To overcome this computational difficulty, we propose an algorithm GRAB (GRAfting for Boolean datasets), which efficiently learns CBM within the L1L_1-regularized loss minimization framework. The key idea of GRAB is to reduce the loss minimization problem to the weighted frequent itemset mining, in which frequent patterns are efficiently computable. We employ benchmark datasets to empirically demonstrate that GRAB is effective in terms of computational efficiency, prediction accuracy and knowledge discovery
    • …
    corecore