185,314 research outputs found
Quantum Optimization Problems
Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for
an NP optimization problem that searches an optimal value among
exponentially-many outcomes of polynomial-time computations. This paper expands
his framework to a quantum optimization problem using polynomial-time quantum
computations and introduces the notion of an ``universal'' quantum optimization
problem similar to a classical ``complete'' optimization problem. We exhibit a
canonical quantum optimization problem that is universal for the class of
polynomial-time quantum optimization problems. We show in a certain relativized
world that all quantum optimization problems cannot be approximated closely by
quantum polynomial-time computations. We also study the complexity of quantum
optimization problems in connection to well-known complexity classes.Comment: date change
A Tensor Analogy of Yuan's Theorem of the Alternative and Polynomial Optimization with Sign structure
Yuan's theorem of the alternative is an important theoretical tool in
optimization, which provides a checkable certificate for the infeasibility of a
strict inequality system involving two homogeneous quadratic functions. In this
paper, we provide a tractable extension of Yuan's theorem of the alternative to
the symmetric tensor setting. As an application, we establish that the optimal
value of a class of nonconvex polynomial optimization problems with suitable
sign structure (or more explicitly, with essentially non-positive coefficients)
can be computed by a related convex conic programming problem, and the optimal
solution of these nonconvex polynomial optimization problems can be recovered
from the corresponding solution of the convex conic programming problem.
Moreover, we obtain that this class of nonconvex polynomial optimization
problems enjoy exact sum-of-squares relaxation, and so, can be solved via a
single semidefinite programming problem.Comment: acceted by Journal of Optimization Theory and its application, UNSW
preprint, 22 page
A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection
We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on semidefinite programming. Our algorithm can solve problems that can not be handled by any of known polynomial optimization solvers.Multi-period portfolio optimization;Polynomial optimization problem;Constant rebalancing;Semidefinite programming;Mean-variance criterion
Exploiting symmetries in SDP-relaxations for polynomial optimization
In this paper we study various approaches for exploiting symmetries in
polynomial optimization problems within the framework of semi definite
programming relaxations. Our special focus is on constrained problems
especially when the symmetric group is acting on the variables. In particular,
we investigate the concept of block decomposition within the framework of
constrained polynomial optimization problems, show how the degree principle for
the symmetric group can be computationally exploited and also propose some
methods to efficiently compute in the geometric quotient.Comment: (v3) Minor revision. To appear in Math. of Operations Researc
- …