513 research outputs found

    Spin networks, quantum automata and link invariants

    Full text link
    The spin network simulator model represents a bridge between (generalized) circuit schemes for standard quantum computation and approaches based on notions from Topological Quantum Field Theories (TQFT). More precisely, when working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum automata which in turn represent discrete versions of topological quantum computation models. Such a quantum combinatorial scheme, which essentially encodes SU(2) Racah--Wigner algebra and its braided counterpart, is particularly suitable to address problems in topology and group theory and we discuss here a finite states--quantum automaton able to accept the language of braid group in view of applications to the problem of estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200

    Knot invariants and higher representation theory

    Full text link
    We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n. Our technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is sln\mathfrak{sl}_n, we show that these categories agree with certain subcategories of parabolic category O for gl_k. We also investigate the finer structure of these categories: they are standardly stratified and satisfy a double centralizer property with respect to their self-dual modules. The standard modules of the stratification play an important role as test objects for functors, as Vermas do in more classical representation theory. The existence of these representations has consequences for the structure of previously studied categorifications. It allows us to prove the non-degeneracy of Khovanov and Lauda's 2-category (that its Hom spaces have the expected dimension) in all symmetrizable types, and that the cyclotomic quiver Hecke algebras are symmetric Frobenius. In work of Reshetikhin and Turaev, the braiding and (co)evaluation maps between representations of quantum groups are used to define polynomial knot invariants. We show that the categorifications of tensor products are related by functors categorifying these maps, which allow the construction of bigraded knot homologies whose graded Euler characteristics are the original polynomial knot invariants.Comment: 99 pages. This is a significantly rewritten version of arXiv:1001.2020 and arXiv:1005.4559; both the exposition and proofs have been significantly improved. These earlier papers have been left up mainly in the interest of preserving references. v3: final version, to appear in Memoirs of the AMS. Proof of nondegeneracy moved to separate erratu
    • …
    corecore