581,452 research outputs found

    Semiflexible polymers under external fields confined to two dimensions

    Get PDF
    The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two dimensions are investigated by molecular dynamics simulations. Three different scenarios are considered: The force-extension relation of tethered polymers, the relaxation of an initially stretched semiflexible polymer, and semiflexible polymers under shear flow. We find quantitative agreement with theoretical predictions for the force-extension relation and the time dependence of the entropically contracting polymer. The semiflexible polymers under shear flow exhibit significant conformational changes at large shear rates, where less stiff polymers are extended by the flow, whereas rather stiff polymers are contracted. In addition, the polymers are aligned by the flow, thereby the two-dimensional semiflexible polymers behave similarly to flexible polymers in three dimensions. The tumbling times display a power-law dependence at high shear rate rates with an exponent comparable to the one of flexible polymers in three-dimensional systems.Comment: Accepted for publication in J. Chem. Phy

    Branched polymers on branched polymers

    Get PDF
    We study an ensemble of branched polymers which are embedded on other branched polymers. This is a toy model which allows us to study explicitly the reaction of a statistical system on an underlying geometrical structure, a problem of interest in the study of the interaction of matter and quantized gravity. We find a phase transition at which the embedded polymers begin to cover the basis polymers. At the phase transition point the susceptibility exponent γ\gamma takes the value 3/4 and the two-point function develops an anomalous dimension 1/2.Comment: uuencoded 9 p. ps-file + 2 ps-figure

    Ladder polymers for use as high temperature stable resins or coatings

    Get PDF
    An object of the invention is to synthesize a new class of ladder and partial ladder polymers. In accordance with the invention, the new class of ladder and partial ladder polymers are synthesized by polymerizing a bis-dienophile with a bis-diene. Another object of the invention is to provide a fabricated, electrically conducting, void free composite comprising the new class of the ladder and partial ladder polymers described above. The novelty of the invention relates to a new class of ladder and partial ladder polymers and a process for synthesizing these polymers. These polymers are soluble in common organic solvents and are characterized with a unique dehydration property at temperatures of 300 to 400 C to provide thermo-oxidatively stable pentiptycene units along the polymeric backbone. These polymers are further characterized with high softening points and good thermo-oxidative stability properties. Thus these polymers have potential as processable, matrix resins for high temperature composite applications

    Synthesis and characterization of novel low band gap semiconducting polymers for organic photovoltaic and organic field effect transistor applications

    Get PDF
    PhDThis thesis describes the synthesis, characterization and device properties of a range of conjugated polymers incorporating 3,6-dilakylthieno[3,2-b]thiophene. We report a new and facile synthesis for the preparation of 3,6-dialkylthieno[3,2-b]thiophene, which is readily scaled up to the multi-gram scale. With this synthesis in hand, we initially investigated the properties of poly(thienothiophene-alt-vinylene) polymers incorporating both straight and branched side-chains. Two different polymerization methods were investigated to synthesise the conjugated polymers, namely Stille and Gilch polymerization. The Gilch route was found to lead to high molecular-weight polymers with less cis-defects in the backbone. The polymers were found to be largely amorphous by X-ray diffraction measurements, although there were clear signs of aggregation by optical investigations. Field-effect transistors fabricated with these polymers exhibited charge carrier mobilities up to 0.02 cm2 V-1 s-1 for the straight chain analogue, with the branched polymer displaying lower mobilities. Blends with PC71BM were found to exhibit solar cell device efficiencies up to 2.5 %, with significant differences observed for polymers containing two different side-chains. In the third chapter we investigated the properties of ethynylene-linked 3,6-dialkylthieno[3,2-b]thiophene polymers. The simple homo-polymers were found to exhibit much worse device performance than the analogous vinylene-containing polymers in transistor devices. Co-polymers with a range of electron accepting monomers were also synthesized. These displayed low optical energy gaps and signs of aggregation in the solid state. Transistors were fabricated and their performance examined. In the final part of this thesis, co-polymers bearing 3,6-dialkylthieno[3,2-b]thiophene donor and squaraine acceptor units were synthesized. These zwitterionic conjugated polymers displayed band gaps as low as 1.0 eV. The influence of the nature of the side-chains and co-monomer was investigated with regard to their optoelectronic properties

    Carboranylmethylene-substituted phosphazenes and polymers thereof

    Get PDF
    Carboranylmethylene-substituted cyclophosphazenes are described which can be thermally polymerized into carboranylmethylene-substituted phosphazene polymers. The polymers are useful as thermally stable coatings. Also, due to the characteristics of these polymers in acting as a ligand for transition metals, metalocarboranylmethylene phosphazene polymers are described which can act as immobilized catalyst systems, and are electrically conductive and superconductive

    Coarse-graining polymers as soft colloids

    Full text link
    We show how to coarse grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid-points or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.Comment: to appear in Physica A, special STATPHYS 2001 edition. Content of invited talk by AA

    Synthesis of oligo- and polythiophenes in zeolite hosts

    Get PDF
    Oligomers and polymers of thiophene derivatives were synthesized in the channels of zeolite Y and mordenite. Intrazeolite oxidation of monomers such as thiophene , 3- methylthiophene , and bithiophene by Fe(lll) or Cu(ll) ions results in formation of insoluble polymers that have spectroscopic properties similar to the corresponding bulk polymers. The zeolites containing the polymers are nonconducting, but when extracted from the host, the polymers show d.c. conductivities typical for t he bulk materials. Oligothiophene species with welldefined electronic transitions could be produced in acidic zeolite Y

    Semiflexible polymers in a random environment

    Full text link
    We present using simple scaling arguments and one step replica symmetry breaking a theory for the localization of semiflexible polymers in a quenched random environment. In contrast to completely flexible polymers, localization of semiflexible polymers depends not only on the details of the disorder but also on the ease with which polymers can bend. The interplay of these two effects can lead to the delocalization of a localized polymer with an increase in either the disorder density or the stiffness. Our theory provides a general criterion for the delocalization of polymers with varying degrees of flexibility and allows us to propose a phase diagram for the highly folded (localized) states of semiflexible polymers as a function of the disorder strength and chain rigidity.Comment: 10 pages, 3 figures, Revtex
    corecore