443,175 research outputs found
The ring-opening polymerization of D,L-lactide in the melt initiated with tetraphenyltin
Melt polymerization conditions for D,L-lactide initiated with tetraphenyltin were studied with regard to polymer molecular weight and weight distributions. "Single" polymerization, "multiple"polymerization (four or eight reactions at the same time), and time-dependent studies are described. Single polymerizations using constant initiator concentrations resulted in a broad scattering of nonreproducible molecular weight values. Multiple polymerizations at constant initiator concentrations, however, resulted in nearly identical molecular weight profiles. Multiple polymerizations at different initiator concentrations did not show an inverse dependency of initiator concentration on polymer molecular weight. Both the single and multiple melt polymerizations resulted in rather broad molecular weight distributions. The presence of hydrolysis products of lactide during the melt polymerization most likely has a detrimental effect on molecular weight. After a short induction period the rather slow polymerization of D,L-lactide resulted in a maximal molecular weight followed by a slight decrease in molecular weight to a constant value. It is concluded that the polymerization of D,L-lactide in the melt initiated with tetraphenyltin does not proceed through a "living" mechanism
Technique for the polymerization of monomers for PPQ/graphite fiber composites
Impregnation of fiber prior to appreciable polymerization completely eliminates impregnation problems encountered with use of high viscosity high molecular weight polyphenylquinoxalines (PPQ) solutions. Major part of polymerization of reactant mixture is conducted on fiber during solvent removal and final curing stages
Synthesis of neutral nickel catalysts for ethylene polymerization – the influence of ligand size on catalyst stability
A facile synthesis of nickel salicylaldimine complexes with labile dissociating ligands is described. In addition to producing highly active ethylene polymerization catalysts, important insights into the effect of ligand size on catalyst stability and information on the mechanism of polymerization are provided
Morphology and properties evolution upon ring-opening polymerization during extrusion of cyclic butylene terephthalate and graphene-related-materials into thermally conductive nanocomposites
In this work, the study of thermal conductivity before and after in-situ
ring-opening polymerization of cyclic butylene terephthalate into poly
(butylene terephthalate) in presence of graphene-related materials (GRM) is
addressed, to gain insight in the modification of nanocomposites morphology
upon polymerization. Five types of GRM were used: one type of graphite
nanoplatelets, two different grades of reduced graphene oxide (rGO) and the
same rGO grades after thermal annealing for 1 hour at 1700{\deg}C under vacuum
to reduce their defectiveness. Polymerization of CBT into pCBT, morphology and
nanoparticle organization were investigated by means of differential scanning
calorimetry, electron microscopy and rheology. Electrical and thermal
properties were investigated by means of volumetric resistivity and bulk
thermal conductivity measurement. In particular, the reduction of nanoflake
aspect ratio during ring-opening polymerization was found to have a detrimental
effect on both electrical and thermal conductivities in nanocomposites
Thermal bulk polymerization of cholesteryl acrylate
The thermal bulk polymerization of cholesteryl acrylate was carried out in the solid phase, the mesomorphic phase, and the liquid phase to study the effect of monomer ordering on polymerization rate and polymer properties. The rate increased with decreasing ordering (or enhanced mobility) of the monomer. Formation of inhibitive by-products during the polymerization limited conversions to 35%. The sedimentation constant S0 = 6.2 S was the same for the polymers obtained in the three phases. The weight-average molecular weight (w) was 480,000 as determined by ultracentrifugation. Poly-(cholesteryl acrylate) formed in bulk is randomly coiled when dissolved in tetrahydrofuran. The thermal properties of the monomer are given
ER-mitochondria contacts: Actin dynamics at the ER control mitochondrial fission via calcium release.
The formin-like protein INF2 is an important player in the polymerization of actin filaments. In this issue, Chakrabarti et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201709111) demonstrate that INF2 mediates actin polymerization at the endoplasmic reticulum (ER), resulting in increased ER-mitochondria contacts, calcium uptake by mitochondria, and mitochondrial division
Adsorption behaviour of molecularly imprinted-beta-cyclodextrin polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization for selective recognition of benzylparaben
Molecularly imprinted polymers (MIPs) are kinds of powerful materials with promising
selective molecule recognition abilities. However, the conventional MIPs have relatively
low binding capacity. In order to improve this characteristic of MIPs, the modification
monomer based on β-cyclodextrin (β-CD) and the essential of reversible addition�fragmentation chain transfer (RAFT) polymerization process were studied to generate
potential MIPs. The study focuses on the characterization and adsorption behaviour of
MIPs for selective recognition of benzylparaben (BzP) analyte. The potential of β-CD in
MIP was investigated by synthesizing a reversible addition-fragmentation chain transfer
molecularly imprinted methacrylic acid functionalized β-cyclodextrin polymer; RAFT�MIP(MAA-β-CD) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD)
monomer, which was then compared to a reversible addition-fragmentation chain transfer
molecularly imprinted methacrylic acid polymer; RAFT-MIP(MAA) synthesized without
β-CD. Both MIPs were prepared by the RAFT polymerization process in bulk
polymerization method. The resulting MIPs were characterized using Fourier Transform
Infrared Spectroscopy (FTIR), Field Scanning Electron Microscope (FESEM) and
Brunauer-Emmett-Teller (BET) analysis. The batch adsorption study that includes
studying of the pH, kinetic, isotherm and thermodynamic was conducted. The essential
of RAFT polymerization on MIP was studied by comparing RAFT-MIP(MAA-β-CD)
with the molecularly imprinted methacrylic acid functionalized β-cyclodextrin polymer;
MIP(MAA-β-CD) was synthesized without RAFT agent, and characterized by using
FTIR, elemental analysis, FESEM and BET. The binding experiments demonstrated that
the RAFT-MIP(MAA-β-CD) has a higher binding capacity and higher accessibility
compared to RAFT-MIP(MAA) and MIP(MAA-β-CD) for selective of BzP, respectively.
The β-CD and RAFT polymerization process improved the MIP’s physical properties and
iv
enhanced its recognition capacity, thus affecting the adsorption behaviour of RAFT�MIP(MAA-β-CD). The effects of RAFT polymerization process were also investigated
by a reversible addition-fragmentation transfer molecularly imprinted hydroxylethyl
methacrylate functionalized β-cyclodextrin polymer; RAFT-MIP(HEMA-β-CD). The
RAFT-MIP(HEMA-β-CD) was synthesized based on the hydroxylethyl-methacrylate
functionalized β-cyclodextrin (HEMA-β-CD) monomer and was prepared by the RAFT
polymerization process in bulk polymerization method. The molecularly imprinted
hydroxylethyl-methacrylate functionalized β-cyclodextrin polymer; MIP(HEMA-β-CD)
without a RAFT agent was synthesized as comparison. A similar study to RAFT�MIP(MAA-β-CD) had also been carried out for RAFT-MIP(HEMA-β-CD).The effects
of RAFT polymerization on RAFT-MIP(HEMA-β-CD) were contrasted with RAFT�MIP(MAA-β-CD). The compact and non-porous morphology of RAFT-MIP(HEMA-β�CD) reduces its binding capacity performance compared to MIP(HEMA-β-CD). Thus,
this directly affected the RAFT-MIP(HEMA-β-CD) adsorption behaviour towards BzP.
It was resulted that the RAFT polymerization had not improved the synthesis of RAFT�MIP(HEMA-β-CD). Careful choice of RAFT agent and monomer is essential in realizing
good control over the RAFT-MIP polymerization process, and generating potential MIP
- …
