3 research outputs found

    Polymer sensorised microgrippers using SMA actuation

    Get PDF
    Abstract-In this paper a polymer sensorised microgripping tool for micromanipulation is presented. The gripper structure is made by moulding of polyurethane in silicon moulds by the technique of Shape Deposition Manufacturing (SDM), in which the force sensing elements and part of the actuator (in this case, microstrain gauges and SMA (Shape Memory Alloy) wire, respectively) are embedded into the microgripper in one process step. The actuation principle for the microgripper is an SMA wire. The advantages of the fabrication process are low cost and manufacture cycle time. This paper details the technique for fabrication of the microgripper to produce prototypes. These prototypes were then tested and characterised in terms of force output, hysteresis and repeatability. A further miniaturised unsensorised microgripper based on the same actuation principle and fabrication process (but less than half the size) was fabricated to demonstrate the possibility of further downscaling

    Design, characterisation and testing of SU8 polymer based electrothermal microgrippers

    Get PDF
    Microassembly systems are designed to combine micro-component parts with high accuracy. These micro-components are fabricated using different manufacturing processes in sizes of several micrometers. This technology is essential to produce miniaturised devices and equipment, especially those built from parts requiring different fabrication procedures. The most important task in microassembly systems is the manipulator, which should have the ability to handle and control micro-particles. Different techniques have been developed to carry out this task depending on the application, required accuracy, and cost. In this thesis, the most common methods are identified and briefly presented, and some advantages and disadvantages are outlined. A microgripper is the most important device utilized to handle micro-objects with high accuracy. However, it is a device that can be used only in sequential microassembly techniques. It has the potential to become the most important tool in the field of micro-robotics, research and development, and assembly of parts with custom requirements. Different actuation mechanisms are employed to design microgrippers such as electromagnetic force, electrostatic force, piezoelectric effect, and electrothermal expansions. Also, different materials are used to fabricate these microgrippers, for example metals, silicon, and polymers such as SU-8. To investigate the limitation and disadvantages of the conventional SU-8 electrothermal based microgrippers, different devices designed and fabricated at IMT, Romania, were studied. The results of these tests showed a small end-effector displacement and short cycling on/off (lifetime). In addition, the actuator part of these microgrippers was deformed after each operation, which results in reduced displacement and inconsistent openings at off state every time it was operated in a power ON/OFF cycle. One of these limitations was caused by the existence of conductors in arms of the end-effectors. These conductor designs have two disadvantages: firstly, it raises temperature in the arms and causing an expansion in the opposite direction of the desired displacement. Secondly, since the conductors pass through the hinges, they should be designed wide enough to reduce the conductor resistance as much as possible. Therefore, the wider the hinges are, the higher the in-plane stiffness and the less out of plane deflection. As a result, it increases the reaction force of the arm reducing the effect of deformation. Based on these limitations a new actuatorstructure of L-shape was proposed to reduce the effects of these drawbacks. This actuator has no conductor in the hinges or the arms of the end-effectors which reduce limitation on the hinge width. . In addition, a further development of this actuator was proposed to increase the stiffness of the actuator by doubling its thickness compared with the other parts of the griper. The results of this actuator proved the improvement in performance and reduction of the actuator deformation. This new actuator structure was used to design several different microgrippers with large displacement and suitable for a wide range of applications. Demonstrations of the capabilities of the microgrippers to be used in microassembly are presented. In addition, a novel tri-directional microactuator is proposed in this thesis. This actuator’s end-effector is capable of displacements in three different directions. This actuator was used with the other designs to develop a novel three-arm (three fingers) multidirectional microgripper. To study the microgripper displacement as a function to the heater temperature, the TCR of the conductor layer of each device was measured. Because different configurations of conductor layers were studied, a significant effect of the metal layer structure on TCR was discovered. The TCR value of gold film is reduced significantly by adding the chromium layers below and about it which were used to improve the adhesion between the gold film and the SU layers. In this thesis, a new method based on a robotic system was developed to characterise these microgrippers and to study the steady state, dynamic response, and reliability (lifetime cycling on/off). An electronic interface was developed and integrated to the robotic system to control and drive the microgrippers. This new system was necessary to carry out automated testing of the microgrippers with accurate and reliable results. Four different new groups of microgrippers were designed and studied. The first group was indirectly actuated using an L-Shaped actuator and two different actuator widths. The initial opening was 120 μm for both designs. The maximum displacement was about 140 μm for both designs. However, the actuator in the wider heater width showed more stable behavior during the cycling and the dynamic tests. The second group was based on direct actuation approach using the L-Shaped actuator. There were eight different designs based on this method with different heater conductor shape, actuator width, and arm thickness. The initial opening was 100 μm and there were different displacements for the eight designs. The study of these microgrippers proved that the actuator stiffness has a significant effect on the microgripper displacement. In addition, the shape of the heater conductor has less effect. The largest displacement achieved using this method of design was about 70 μm. The third group was designed for dual mode operation and has three different designs. The initial openings were 90 μm and 250 μm. The displacement was about 170 μm in both modes. The last microgripper design was a tri-arm design for multi-mode operation. The lifetime study of SU8 based microgrippers in this thesis was the first time such an investigation was carried out. The results of IMT designs showed that the larger is the displacement the less stable is the gripper design because of the high rection force acting on the actuators. The L-shape based microgrippers had better performance and they did not break after more than 400 cycles. In addition, the studies of static displacement and dynamic response of different designed microgripper proved that better performance of the proposed actuator can be obtained by using double thickness for the actuator as compared to the arm thickness

    Polymer sensorised microgrippers using SMA actuation

    No full text
    corecore