4 research outputs found

    Index

    Get PDF

    A laminarity property of the polyhedron described by a weakly posi-modular set function

    Get PDF
    AbstractRecently, Nagamochi and Ibaraki have introduced a concept of posi-modular set function and considered the structure of the polyhedron described by an intersecting submodular and posi-modular function. They showed that the facets of the polyhedron form a laminar family. We show that such a laminarity property also holds for a much more general class of set functions, called weakly posi-modular set functions, without submodularity

    Posimodular Function Optimization

    Full text link
    Given a posimodular function f:2VRf: 2^V \to \mathbb{R} on a finite set VV, we consider the problem of finding a nonempty subset XX of VV that minimizes f(X)f(X). Posimodular functions often arise in combinatorial optimization such as undirected cut functions. In this paper, we show that any algorithm for the problem requires Ω(2n7.54)\Omega(2^{\frac{n}{7.54}}) oracle calls to ff, where n=Vn=|V|. It contrasts to the fact that the submodular function minimization, which is another generalization of cut functions, is polynomially solvable. When the range of a given posimodular function is restricted to be D={0,1,...,d}D=\{0,1,...,d\} for some nonnegative integer dd, we show that Ω(2d15.08)\Omega(2^{\frac{d}{15.08}}) oracle calls are necessary, while we propose an O(ndTf+n2d+1)O(n^dT_f+n^{2d+1})-time algorithm for the problem. Here, TfT_f denotes the time needed to evaluate the function value f(X)f(X) for a given XVX \subseteq V. We also consider the problem of maximizing a given posimodular function. We show that Ω(2n1)\Omega(2^{n-1}) oracle calls are necessary for solving the problem, and that the problem has time complexity Θ(nd1Tf)\Theta(n^{d-1}T_f) when D={0,1,...,d}D=\{0,1,..., d\} is the range of ff for some constant dd.Comment: 18 page
    corecore