49 research outputs found

    Cyclic sieving and cluster multicomplexes

    Get PDF
    Reiner, Stanton, and White \cite{RSWCSP} proved results regarding the enumeration of polygon dissections up to rotational symmetry. Eu and Fu \cite{EuFu} generalized these results to Cartan-Killing types other than A by means of actions of deformed Coxeter elements on cluster complexes of Fomin and Zelevinsky \cite{FZY}. The Reiner-Stanton-White and Eu-Fu results were proven using direct counting arguments. We give representation theoretic proofs of closely related results using the notion of noncrossing and semi-noncrossing tableaux due to Pylyavskyy \cite{PN} as well as some geometric realizations of finite type cluster algebras due to Fomin and Zelevinsky \cite{FZClusterII}.Comment: To appear in Adv. Appl. Mat

    Cyclic Sieving of Increasing Tableaux and small Schr\"oder Paths

    Full text link
    An increasing tableau is a semistandard tableau with strictly increasing rows and columns. It is well known that the Catalan numbers enumerate both rectangular standard Young tableaux of two rows and also Dyck paths. We generalize this to a bijection between rectangular 2-row increasing tableaux and small Schr\"oder paths. We demonstrate relations between the jeu de taquin for increasing tableaux developed by H. Thomas and A. Yong and the combinatorics of tropical frieze patterns. We then use this jeu de taquin to present new instances of the cyclic sieving phenomenon of V. Reiner, D. Stanton, and D. White, generalizing results of D. White and of J. Stembridge.Comment: 20 page

    Combinatorics for Certain Skew Young Tableaux, Dyck Paths, Triangulations, and Dissections

    Full text link
    We present combinatorial bijections and identities between certain skew Young tableaux, Dyck paths, triangulations, and dissections.Comment: 22 page

    The cyclic sieving phenomenon: a survey

    Full text link
    The cyclic sieving phenomenon was defined by Reiner, Stanton, and White in a 2004 paper. Let X be a finite set, C be a finite cyclic group acting on X, and f(q) be a polynomial in q with nonnegative integer coefficients. Then the triple (X,C,f(q)) exhibits the cyclic sieving phenomenon if, for all g in C, we have # X^g = f(w) where # denotes cardinality, X^g is the fixed point set of g, and w is a root of unity chosen to have the same order as g. It might seem improbable that substituting a root of unity into a polynomial with integer coefficients would have an enumerative meaning. But many instances of the cyclic sieving phenomenon have now been found. Furthermore, the proofs that this phenomenon hold often involve interesting and sometimes deep results from representation theory. We will survey the current literature on cyclic sieving, providing the necessary background about representations, Coxeter groups, and other algebraic aspects as needed.Comment: 48 pages, 3 figures, the sedcond version contains numerous changes suggested by colleagues and the referee. To appear in the London Mathematical Society Lecture Note Series. The third version has a few smaller change

    Minimal Permutations and 2-Regular Skew Tableaux

    Get PDF
    Bouvel and Pergola introduced the notion of minimal permutations in the study of the whole genome duplication-random loss model for genome rearrangements. Let Fd(n)\mathcal{F}_d(n) denote the set of minimal permutations of length nn with dd descents, and let fd(n)=∣Fd(n)∣f_d(n)= |\mathcal{F}_d(n)|. They derived that fnβˆ’2(n)=2nβˆ’(nβˆ’1)nβˆ’2f_{n-2}(n)=2^{n}-(n-1)n-2 and fn(2n)=Cnf_n(2n)=C_n, where CnC_n is the nn-th Catalan number. Mansour and Yan proved that fn+1(2n+1)=2nβˆ’2nCn+1f_{n+1}(2n+1)=2^{n-2}nC_{n+1}. In this paper, we consider the problem of counting minimal permutations in Fd(n)\mathcal{F}_d(n) with a prescribed set of ascents. We show that such structures are in one-to-one correspondence with a class of skew Young tableaux, which we call 22-regular skew tableaux. Using the determinantal formula for the number of skew Young tableaux of a given shape, we find an explicit formula for fnβˆ’3(n)f_{n-3}(n). Furthermore, by using the Knuth equivalence, we give a combinatorial interpretation of a formula for a refinement of the number fn+1(2n+1)f_{n+1}(2n+1).Comment: 19 page
    corecore