918 research outputs found

    Better, Faster, Stronger Sequence Tagging Constituent Parsers

    Get PDF
    Sequence tagging models for constituent parsing are faster, but less accurate than other types of parsers. In this work, we address the following weaknesses of such constituent parsers: (a) high error rates around closing brackets of long constituents, (b) large label sets, leading to sparsity, and (c) error propagation arising from greedy decoding. To effectively close brackets, we train a model that learns to switch between tagging schemes. To reduce sparsity, we decompose the label set and use multi-task learning to jointly learn to predict sublabels. Finally, we mitigate issues from greedy decoding through auxiliary losses and sentence-level fine-tuning with policy gradient. Combining these techniques, we clearly surpass the performance of sequence tagging constituent parsers on the English and Chinese Penn Treebanks, and reduce their parsing time even further. On the SPMRL datasets, we observe even greater improvements across the board, including a new state of the art on Basque, Hebrew, Polish and Swedish.Comment: NAACL 2019 (long papers). Contains corrigendu

    Parsing as Reduction

    Full text link
    We reduce phrase-representation parsing to dependency parsing. Our reduction is grounded on a new intermediate representation, "head-ordered dependency trees", shown to be isomorphic to constituent trees. By encoding order information in the dependency labels, we show that any off-the-shelf, trainable dependency parser can be used to produce constituents. When this parser is non-projective, we can perform discontinuous parsing in a very natural manner. Despite the simplicity of our approach, experiments show that the resulting parsers are on par with strong baselines, such as the Berkeley parser for English and the best single system in the SPMRL-2014 shared task. Results are particularly striking for discontinuous parsing of German, where we surpass the current state of the art by a wide margin

    Method for Aspect-Based Sentiment Annotation Using Rhetorical Analysis

    Full text link
    This paper fills a gap in aspect-based sentiment analysis and aims to present a new method for preparing and analysing texts concerning opinion and generating user-friendly descriptive reports in natural language. We present a comprehensive set of techniques derived from Rhetorical Structure Theory and sentiment analysis to extract aspects from textual opinions and then build an abstractive summary of a set of opinions. Moreover, we propose aspect-aspect graphs to evaluate the importance of aspects and to filter out unimportant ones from the summary. Additionally, the paper presents a prototype solution of data flow with interesting and valuable results. The proposed method's results proved the high accuracy of aspect detection when applied to the gold standard dataset

    A non-projective greedy dependency parser with bidirectional LSTMs

    Full text link
    The LyS-FASTPARSE team presents BIST-COVINGTON, a neural implementation of the Covington (2001) algorithm for non-projective dependency parsing. The bidirectional LSTM approach by Kipperwasser and Goldberg (2016) is used to train a greedy parser with a dynamic oracle to mitigate error propagation. The model participated in the CoNLL 2017 UD Shared Task. In spite of not using any ensemble methods and using the baseline segmentation and PoS tagging, the parser obtained good results on both macro-average LAS and UAS in the big treebanks category (55 languages), ranking 7th out of 33 teams. In the all treebanks category (LAS and UAS) we ranked 16th and 12th. The gap between the all and big categories is mainly due to the poor performance on four parallel PUD treebanks, suggesting that some `suffixed' treebanks (e.g. Spanish-AnCora) perform poorly on cross-treebank settings, which does not occur with the corresponding `unsuffixed' treebank (e.g. Spanish). By changing that, we obtain the 11th best LAS among all runs (official and unofficial). The code is made available at https://github.com/CoNLL-UD-2017/LyS-FASTPARSEComment: 12 pages, 2 figures, 5 table

    Learning to Reason: End-to-End Module Networks for Visual Question Answering

    Full text link
    Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-the-art attentional approaches, while discovering interpretable network architectures specialized for each question

    Better, Faster, Stronger Sequence Tagging Constituent Parsers

    Get PDF
    corecore