45 research outputs found
Calculations of three-nucleon reactions with N3LO chiral forces: achievements and challenges
We discuss the application of the chiral N3LO forces to three-nucleon
reactions and point to the challenges which will have to be addressed. Present
approaches to solve three-nucleon Faddeev equations are based on a partial-wave
decomposition. A rapid increase of the number of terms contributing to the
chiral three-nucleon force when increasing the order of the chiral expansion
from N2LO to N3LO forced us to develop a fast and effective method of
automatized partial wave decomposition. At low energies of the incoming nucleon
below about 20MeV, where only a limited number of partial waves is required,
this method allowed us to perform calculations of reactions in the
three-nucleon continuum using N3LO two- and three-nucleon forces. It turns out
that inclusion of consistent chiral interactions, with relativistic 1/m
corrections and short-range 2pi-contact term omitted in the N3LO three-nucleon
force, does not explain the long standing low energy Ay-puzzle. We discuss
problems arising when chiral forces are applied at higher energies, where large
three-nucleon force effects are expected. It seems plausible that at higher
energies, due to a rapid increase of a number of partial waves required to
reach convergent results, a three-dimensional formulation of the Faddeev
equations which avoids partial-wave decomposition is desirable.Comment: 31 pages, 13 figure
Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum
The influence of the magnetic moment interaction of nucleons on
nucleon-deuteron elastic scattering and breakup cross sections and on elastic
scattering polarization observables has been studied. Among the numerous
elastic scattering observables only the vector analyzing powers were found to
show a significant effect, and of opposite sign for the proton-deuteron and
neutron-deuteron systems. This finding results in an even larger discrepancy
than the one previously established between neutron-deuteron data and
theoretical calculations. For the breakup reaction the largest effect was found
for the final-state-interaction cross sections. The consequences of this
observation on previous determinations of the ^1S_0 scattering lengths from
breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur
Coordinate space proton-deuteron scattering calculations including Coulomb force effects
We present a practical method to solve the proton-deuteron scattering problem
at energies above the three-body breakup threshold, in which we treat
three-body integral equations in coordinate space accommodating long-range
proton-proton Coulomb interactions. The method is examined for phase shift
parameters, and then applied to calculations of differential cross sections in
elastic and breakup reactions, analyzing powers, etc. with a realistic
nucleon-nucleon force and three-nucleon forces. Effects of the Coulomb force
and the three-nucleon forces on these observables are discussed in comparing
with experimental data.Comment: 15 pages, 14 figures, submitted to PR
Evolution of the dipole polarizability in the stable tin isotope chain
The dipole polarizability of stable even-mass tin isotopes
112,114,116,118,120,124 was extracted from inelastic proton scattering
experiments at 295 MeV under very forward angles performed at RCNP. Predictions
from energy density functionals cannot account for the present data and the
polarizability of 208Pb simultaneously. The evolution of the polarizabilities
in neighboring isotopes indicates a kink at 120Sn while all model results show
a nearly linear increase with mass number after inclusion of pairing
corrections.Comment: 10 pages, 6 figures, submitted to Phys. Lett.
The nucleon-nucleon interaction
We review the major progress of the past decade concerning our understanding
of the nucleon-nucleon interaction. The focus is on the low-energy region
(below pion production threshold), but a brief outlook towards higher energies
is also given. The items discussed include charge-dependence, the precise value
of the coupling constant, phase shift analysis and high-precision NN
data and potentials. We also address the issue of a proper theory of nuclear
forces. Finally, we summarize the essential open questions that future research
should be devoted to.Comment: 42 pages, 12 figures, iopart.cls style; Topical Review prepared for
J. Phys. G: Nucl. Part. Phy
Experimental studies of nuclear interactions in few-nucleon systems
This article belongs to the Topical Collection "The 23rd European Conference on Few-Body Problems in Physics". This work was partially supported by Polish National Science Center from Grant DEC-2012/05/B/ST2/02556 and by the European Commission within the Seventh Framework Programme through IA-ENSAR (contract no. RII3-CT-2010-262010).Systems of three nucleons (3N) can be treated as a testing ground for modern approaches to describe nuclear interactions. At intermediate energies, observables for 3N systems are sensitive to subtle effects of the dynamics beyond the pairwise nucleon–nucleon force, so-called 3N-force (3NF). For years the search for 3NF has been motivating precise measurements of observables of elastic nucleon–deuteron scattering and for the deuteron breakup reaction. Breakup of a deuteron in collision with a proton leads to the final state of three free nucleons, with variety of possible kinematic configurations, revealing locally enhanced sensitivity to particular aspects of the interaction dynamics, like 3NF, Coulomb force between protons, or relativistic effects. This feature makes the breakup reaction a very versatile tool for validation of the theoretical description. Reactions involving four nucleons pose immense challenges with regard to exact theoretical calculations for such systems. Nonetheless, they attract attention due to expected enhanced sensitivity to certain aspects of the nuclear dynamics, manifesting themselves in various channels and configurations. The most important results of recent experimental studies of 3N and 4N systems at intermediate energies are discussed. A brief survey of the ongoing projects is given.NCN, European Commission within the Seventh Framework Programme through IA-ENSA
