25,949 research outputs found

    Properties and Construction of Polar Codes

    Full text link
    Recently, Ar{\i}kan introduced the method of channel polarization on which one can construct efficient capacity-achieving codes, called polar codes, for any binary discrete memoryless channel. In the thesis, we show that decoding algorithm of polar codes, called successive cancellation decoding, can be regarded as belief propagation decoding, which has been used for decoding of low-density parity-check codes, on a tree graph. On the basis of the observation, we show an efficient construction method of polar codes using density evolution, which has been used for evaluation of the error probability of belief propagation decoding on a tree graph. We further show that channel polarization phenomenon and polar codes can be generalized to non-binary discrete memoryless channels. Asymptotic performances of non-binary polar codes, which use non-binary matrices called the Reed-Solomon matrices, are better than asymptotic performances of the best explicitly known binary polar code. We also find that the Reed-Solomon matrices are considered to be natural generalization of the original binary channel polarization introduced by Ar{\i}kan.Comment: Master thesis. The supervisor is Toshiyuki Tanaka. 24 pages, 3 figure

    Fast Polarization for Processes with Memory

    Full text link
    Fast polarization is crucial for the performance guarantees of polar codes. In the memoryless setting, the rate of polarization is known to be exponential in the square root of the block length. A complete characterization of the rate of polarization for models with memory has been missing. Namely, previous works have not addressed fast polarization of the high entropy set under memory. We consider polar codes for processes with memory that are characterized by an underlying ergodic finite-state Markov chain. We show that the rate of polarization for these processes is the same as in the memoryless setting, both for the high and for the low entropy sets.Comment: 17 pages, 3 figures. Submitted to IEEE Transactions on Information Theor

    Construction of Capacity-Achieving Lattice Codes: Polar Lattices

    Full text link
    In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the multilevel approach of Forney \textit{et al.}, where we construct a capacity-achieving polar code on each level. The component polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We prove that polar lattices are \emph{AWGN-good}. Furthermore, using the technique of source polarization, we propose discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are explicit, and the overall complexity of encoding and decoding is O(NlogN)O(N\log N) for any fixed target error probability.Comment: full version of the paper to appear in IEEE Trans. Communication

    General Strong Polarization

    Full text link
    Arikan's exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix MM, a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the {\em polarization} of an associated [0,1][0,1]-bounded martingale, namely its convergence in the limit to either 00 or 11. Arikan showed polarization of the martingale associated with the matrix G2=(1011)G_2 = \left(\begin{matrix} 1& 0 1& 1\end{matrix}\right) to get capacity achieving codes. His analysis was later extended to all matrices MM that satisfy an obvious necessary condition for polarization. While Arikan's theorem does not guarantee that the codes achieve capacity at small blocklengths, it turns out that a "strong" analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with G2G_2 such a strong polarization was shown in two independent works ([Guruswami and Xia, IEEE IT '15] and [Hassani et al., IEEE IT '14]), resolving a major theoretical challenge of the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are also simpler and modular. Specifically, our result shows strong polarization over all prime fields and leads to efficient capacity-achieving codes for arbitrary symmetric memoryless channels. We show how to use our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to capacity. Indeed we show that we can essentially match any error probability with lengths that are only inverse polynomial in the gap to capacity.Comment: 73 pages, 2 figures. The final version appeared in JACM. This paper combines results presented in preliminary form at STOC 2018 and RANDOM 201

    ABS+ Polar Codes: Exploiting More Linear Transforms on Adjacent Bits

    Full text link
    ABS polar codes were recently proposed to speed up polarization by swapping certain pairs of adjacent bits after each layer of polar transform. In this paper, we observe that applying the Arikan transform (Ui,Ui+1)(Ui+Ui+1,Ui+1)(U_i, U_{i+1}) \mapsto (U_{i}+U_{i+1}, U_{i+1}) on certain pairs of adjacent bits after each polar transform layer leads to even faster polarization. In light of this, we propose ABS+ polar codes which incorporate the Arikan transform in addition to the swapping transform in ABS polar codes. In order to efficiently construct and decode ABS+ polar codes, we derive a new recursive relation between the joint distributions of adjacent bits through different layers of polar transforms. Simulation results over a wide range of parameters show that the CRC-aided SCL decoder of ABS+ polar codes improves upon that of ABS polar codes by 0.1dB--0.25dB while maintaining the same decoding time. Moreover, ABS+ polar codes improve upon standard polar codes by 0.2dB--0.45dB when they both use the CRC-aided SCL decoder with list size 3232. The implementations of all the algorithms in this paper are available at https://github.com/PlumJelly/ABS-PolarComment: Final version to be published in IEEE Transactions on Information Theor

    Countably Infinite Multilevel Source Polarization for Non-Stationary Erasure Distributions

    Full text link
    Polar transforms are central operations in the study of polar codes. This paper examines polar transforms for non-stationary memoryless sources on possibly infinite source alphabets. This is the first attempt of source polarization analysis over infinite alphabets. The source alphabet is defined to be a Polish group, and we handle the Ar{\i}kan-style two-by-two polar transform based on the group. Defining erasure distributions based on the normal subgroup structure, we give recursive formulas of the polar transform for our proposed erasure distributions. As a result, the recursive formulas lead to concrete examples of multilevel source polarization with countably infinite levels when the group is locally cyclic. We derive this result via elementary techniques in lattice theory.Comment: 12 pages, 1 figure, a short version has been accepted by the 2019 IEEE International Symposium on Information Theory (ISIT2019

    Polarization-Adjusted Convolutional (PAC) Codes as a Concatenation of Inner Cyclic and Outer Polar- and Reed-Muller-like Codes

    Full text link
    Polarization-adjusted convolutional (PAC) codes are a new family of linear block codes that can perform close to the theoretical bounds in the short block-length regime. These codes combine polar coding and convolutional coding. In this study, we show that PAC codes are equivalent to a new class of codes consisting of inner cyclic codes and outer polar- and Reed-Muller-like codes. We leverage the properties of cyclic codes to establish that PAC codes outperform polar- and Reed-Muller-like codes in terms of minimum distance
    corecore