138 research outputs found

    Design and optimization of joint iterative detection and decoding receiver for uplink polar coded SCMA system

    Get PDF
    SCMA and polar coding are possible candidates for 5G systems. In this paper, we firstly propose the joint iterative detection and decoding (JIDD) receiver for the uplink polar coded sparse code multiple access (PC-SCMA) system. Then, the EXIT chart is used to investigate the performance of the JIDD receiver. Additionally, we optimize the system design and polar code construction based on the EXIT chart analysis. The proposed receiver integrates the factor graph of SCMA detector and polar soft-output decoder into a joint factor graph, which enables the exchange of messages between SCMA detector and polar decoder iteratively. Simulation results demonstrate that the JIDD receiver has better BER performance and lower complexity than the separate scheme. Specifically, when polar code length N=256 and code rate R=1/2 , JIDD outperforms the separate scheme 4.8 and 6 dB over AWGN channel and Rayleigh fading channel, respectively. It also shows that, under 150% system loading, the JIDD receiver only has 0.3 dB performance loss compared to the single user uplink PC-SCMA over AWGN channel and 0.6 dB performance loss over Rayleigh fading channel

    Polar Code: An Advanced Encoding And Decoding Architecture For Next Generation 5G Applications

    Get PDF
    Polar Codes become a new channel coding, which will be common to apply for next-generation wireless communication systems. Polar codes, introduced by Arikan, achieves the capacity of symmetric channels with “low encoding and decoding complexity” for a large class of underlying channels. Recently, polar code has become the most favorable error correcting code in the viewpoint of information theory due to its property of channel achieving capacity. Polar code achieves the capacity of the class of symmetric binary memory less channels. In this paper review of polar code, an advanced encoding and decoding architecture for next generation applications

    Toward High-Performance Implementation of 5G SCMA Algorithms

    Get PDF
    International audienceThe recent evolution of mobile communication systems toward a 5G network is associated with the search for new types of non-orthogonal modulations such as Sparse Code Multiple Access (SCMA). Such modulations are proposed in response to demands for increasing the number of connected users. SCMA is a non-orthogonal multiple access technique that offers improved Bit Error Rate (BER) performance and higher spectral efficiency than other comparable techniques, but these improvements come at the cost of complex decoders. There are many challenges in designing near-optimum high throughput SCMA decoders. This paper explores means to enhance the performance of SCMA decoders. To achieve this goal, various improvements to the MPA algorithms are proposed. They notably aim at adapting SCMA decoding to the Single Instruction Multiple Data (SIMD) paradigm. An approximate modeling of noise is performed to reduce the complexity of floating-point calculations. The effects of Forward Error Corrections (FEC) such as polar, turbo and LDPC codes, as well as different ways of accessing memory and improving power efficiency of modified MPAs are investigated. The results show that the throughput of a SCMA decoder can be increased by 3.1 to 21 times when compared to the original MPA on different computing platforms using the suggested improvements
    • …
    corecore