174,398 research outputs found

    Poisson Geometry in Constrained Systems

    Full text link
    Constrained Hamiltonian systems fall into the realm of presymplectic geometry. We show, however, that also Poisson geometry is of use in this context. For the case that the constraints form a closed algebra, there are two natural Poisson manifolds associated to the system, forming a symplectic dual pair with respect to the original, unconstrained phase space. We provide sufficient conditions so that the reduced phase space of the constrained system may be identified with a symplectic leaf in one of those. In the second class case the original constrained system may be reformulated equivalently as an abelian first class system in an extended phase space by these methods. Inspired by the relation of the Dirac bracket of a general second class constrained system to the original unconstrained phase space, we address the question of whether a regular Poisson manifold permits a leafwise symplectic embedding into a symplectic manifold. Necessary and sufficient for this is the vanishing of the characteristic form-class of the Poisson tensor, a certain element of the third relative cohomology.Comment: 41 pages, more detailed abstract in paper; v2: minor corrections and an additional referenc

    The Hitchin Model, Poisson-quasi-Nijenhuis Geometry and Symmetry Reduction

    Full text link
    We revisit our earlier work on the AKSZ formulation of topological sigma model on generalized complex manifolds, or Hitchin model. We show that the target space geometry geometry implied by the BV master equations is Poisson--quasi--Nijenhuis geometry recently introduced and studied by Sti\'enon and Xu (in the untwisted case). Poisson--quasi--Nijenhuis geometry is more general than generalized complex geometry and comprises it as a particular case. Next, we show how gauging and reduction can be implemented in the Hitchin model. We find that the geometry resulting form the BV master equation is closely related to but more general than that recently described by Lin and Tolman, suggesting a natural framework for the study of reduction of Poisson--quasi--Nijenhuis manifolds.Comment: 38 pages, no figures, LaTex. One paragraph in sect. 6 and 3 references adde

    The Poisson geometry of SU(1,1)

    Full text link
    We study the natural Poisson structure on the Lie group SU(1,1) and related questions. In particular, we give an explicit description of the Ginzburg-Weinstein isomorphism for the sets of admissible elements. We also establish an analogue of Thompson's conjecture for this group.Comment: 11 pages, minor correction

    BRST quantization of quasi-symplectic manifolds and beyond

    Full text link
    We consider a class of \textit{factorizable} Poisson brackets which includes almost all reasonable Poisson structures. A particular case of the factorizable brackets are those associated with symplectic Lie algebroids. The BRST theory is applied to describe the geometry underlying these brackets as well as to develop a deformation quantization procedure in this particular case. This can be viewed as an extension of the Fedosov deformation quantization to a wide class of \textit{irregular} Poisson structures. In a more general case, the factorizable Poisson brackets are shown to be closely connected with the notion of nn-algebroid. A simple description is suggested for the geometry underlying the factorizable Poisson brackets basing on construction of an odd Poisson algebra bundle equipped with an abelian connection. It is shown that the zero-curvature condition for this connection generates all the structure relations for the nn-algebroid as well as a generalization of the Yang-Baxter equation for the symplectic structure.Comment: Journal version, references and comments added, style improve
    corecore