174,398 research outputs found
Poisson Geometry in Constrained Systems
Constrained Hamiltonian systems fall into the realm of presymplectic
geometry. We show, however, that also Poisson geometry is of use in this
context.
For the case that the constraints form a closed algebra, there are two
natural Poisson manifolds associated to the system, forming a symplectic dual
pair with respect to the original, unconstrained phase space. We provide
sufficient conditions so that the reduced phase space of the constrained system
may be identified with a symplectic leaf in one of those. In the second class
case the original constrained system may be reformulated equivalently as an
abelian first class system in an extended phase space by these methods.
Inspired by the relation of the Dirac bracket of a general second class
constrained system to the original unconstrained phase space, we address the
question of whether a regular Poisson manifold permits a leafwise symplectic
embedding into a symplectic manifold. Necessary and sufficient for this is the
vanishing of the characteristic form-class of the Poisson tensor, a certain
element of the third relative cohomology.Comment: 41 pages, more detailed abstract in paper; v2: minor corrections and
an additional referenc
The Hitchin Model, Poisson-quasi-Nijenhuis Geometry and Symmetry Reduction
We revisit our earlier work on the AKSZ formulation of topological sigma
model on generalized complex manifolds, or Hitchin model. We show that the
target space geometry geometry implied by the BV master equations is
Poisson--quasi--Nijenhuis geometry recently introduced and studied by Sti\'enon
and Xu (in the untwisted case). Poisson--quasi--Nijenhuis geometry is more
general than generalized complex geometry and comprises it as a particular
case. Next, we show how gauging and reduction can be implemented in the Hitchin
model. We find that the geometry resulting form the BV master equation is
closely related to but more general than that recently described by Lin and
Tolman, suggesting a natural framework for the study of reduction of
Poisson--quasi--Nijenhuis manifolds.Comment: 38 pages, no figures, LaTex. One paragraph in sect. 6 and 3
references adde
The Poisson geometry of SU(1,1)
We study the natural Poisson structure on the Lie group SU(1,1) and related
questions. In particular, we give an explicit description of the
Ginzburg-Weinstein isomorphism for the sets of admissible elements. We also
establish an analogue of Thompson's conjecture for this group.Comment: 11 pages, minor correction
BRST quantization of quasi-symplectic manifolds and beyond
We consider a class of \textit{factorizable} Poisson brackets which includes
almost all reasonable Poisson structures. A particular case of the factorizable
brackets are those associated with symplectic Lie algebroids. The BRST theory
is applied to describe the geometry underlying these brackets as well as to
develop a deformation quantization procedure in this particular case. This can
be viewed as an extension of the Fedosov deformation quantization to a wide
class of \textit{irregular} Poisson structures. In a more general case, the
factorizable Poisson brackets are shown to be closely connected with the notion
of -algebroid. A simple description is suggested for the geometry underlying
the factorizable Poisson brackets basing on construction of an odd Poisson
algebra bundle equipped with an abelian connection. It is shown that the
zero-curvature condition for this connection generates all the structure
relations for the -algebroid as well as a generalization of the Yang-Baxter
equation for the symplectic structure.Comment: Journal version, references and comments added, style improve
- …
