419 research outputs found

    A Survey on Reinforcement Learning Security with Application to Autonomous Driving

    Full text link
    Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving

    Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities

    Full text link
    Robotics and Artificial Intelligence (AI) have been inextricably intertwined since their inception. Today, AI-Robotics systems have become an integral part of our daily lives, from robotic vacuum cleaners to semi-autonomous cars. These systems are built upon three fundamental architectural elements: perception, navigation and planning, and control. However, while the integration of AI-Robotics systems has enhanced the quality our lives, it has also presented a serious problem - these systems are vulnerable to security attacks. The physical components, algorithms, and data that make up AI-Robotics systems can be exploited by malicious actors, potentially leading to dire consequences. Motivated by the need to address the security concerns in AI-Robotics systems, this paper presents a comprehensive survey and taxonomy across three dimensions: attack surfaces, ethical and legal concerns, and Human-Robot Interaction (HRI) security. Our goal is to provide users, developers and other stakeholders with a holistic understanding of these areas to enhance the overall AI-Robotics system security. We begin by surveying potential attack surfaces and provide mitigating defensive strategies. We then delve into ethical issues, such as dependency and psychological impact, as well as the legal concerns regarding accountability for these systems. Besides, emerging trends such as HRI are discussed, considering privacy, integrity, safety, trustworthiness, and explainability concerns. Finally, we present our vision for future research directions in this dynamic and promising field
    • …
    corecore