933,265 research outputs found

    Plethysm and lattice point counting

    Full text link
    We apply lattice point counting methods to compute the multiplicities in the plethysm of GL(n)GL(n). Our approach gives insight into the asymptotic growth of the plethysm and makes the problem amenable to computer algebra. We prove an old conjecture of Howe on the leading term of plethysm. For any partition μ\mu of 3,4, or 5 we obtain an explicit formula in λ\lambda and kk for the multiplicity of SλS^\lambda in Sμ(Sk)S^\mu(S^k).Comment: 25 pages including appendix, 1 figure, computational results and code available at http://thomas-kahle.de/plethysm.html, v2: various improvements, v3: final version appeared in JFoC

    Counting defects with the two-point correlator

    Full text link
    We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z_2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form as a function of k/n, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).Comment: 11 pages, 7 figures
    • …
    corecore