250 research outputs found

    A decentralized scalable approach to voltage control of DC islanded microgrids

    Get PDF
    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the Point of Common Coupling (PCC) of the corresponding DGU. Notably, off-line control design is conducted in a Plug-and-Play (PnP) fashion meaning that (i) the possibility of adding/removing a DGU without spoiling stability of the overall ImG is checked through an optimization problem; (ii) when a DGU is plugged in or out at most neighbouring DGUs have to update their controllers and (iii) the synthesis of a local controller uses only information on the corresponding DGU and lines connected to it. This guarantee total scalability of control synthesis as the ImG size grows or DGU gets replaced. Yes, under mild approximations of line dynamics, we formally guarantee stability of the overall closed-loop ImG. The performance of the proposed controllers is analyzed simulating different scenarios in PSCAD.Comment: arXiv admin note: text overlap with arXiv:1405.242

    Plug-and-play and coordinated control for bus-connected AC islanded microgrids

    Full text link
    This paper presents a distributed control architecture for voltage and frequency stabilization in AC islanded microgrids. In the primary control layer, each generation unit is equipped with a local controller acting on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex optimization. The update of the voltage-control layer, when units plug -in/-out, is therefore automatized and stability of the microgrid is always preserved. Moreover, local control design is based only on the knowledge of parameters of power lines and it does not require to store a global microgrid model. In this work, we focus on bus-connected microgrid topologies and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with balanced, unbalanced and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can be resized over time

    A scalable line-independent design algorithm for voltage and frequency control in AC islanded microgrids

    Full text link
    We propose a decentralized control synthesis procedure for stabilizing voltage and frequency in AC Islanded microGrids (ImGs) composed of Distributed Generation Units (DGUs) and loads interconnected through power lines. The presented approach enables Plug-and-Play (PnP) operations, meaning that DGUs can be added or removed without compromising the overall ImG stability. The main feature of our approach is that the proposed design algorithm is line-independent. This implies that (i) the synthesis of each local controller requires only the parameters of the corresponding DGU and not the model of power lines connecting neighboring DGUs, and (ii) whenever a new DGU is plugged in, DGUs physically coupled with it do not have to retune their regulators because of the new power line connected to them. Moreover, we formally prove that stabilizing local controllers can be always computed, independently of the electrical parameters. Theoretical results are validated by simulating in PSCAD the behavior of a 10-DGUs ImG

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed
    • …
    corecore