3,175 research outputs found

    Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning

    Full text link
    Text-based adventure games provide a platform on which to explore reinforcement learning in the context of a combinatorial action space, such as natural language. We present a deep reinforcement learning architecture that represents the game state as a knowledge graph which is learned during exploration. This graph is used to prune the action space, enabling more efficient exploration. The question of which action to take can be reduced to a question-answering task, a form of transfer learning that pre-trains certain parts of our architecture. In experiments using the TextWorld framework, we show that our proposed technique can learn a control policy faster than baseline alternatives. We have also open-sourced our code at https://github.com/rajammanabrolu/KG-DQN.Comment: Proceedings of NAACL-HLT 201

    Text-based Adventures of the Golovin AI Agent

    Full text link
    The domain of text-based adventure games has been recently established as a new challenge of creating the agent that is both able to understand natural language, and acts intelligently in text-described environments. In this paper, we present our approach to tackle the problem. Our agent, named Golovin, takes advantage of the limited game domain. We use genre-related corpora (including fantasy books and decompiled games) to create language models suitable to this domain. Moreover, we embed mechanisms that allow us to specify, and separately handle, important tasks as fighting opponents, managing inventory, and navigating on the game map. We validated usefulness of these mechanisms, measuring agent's performance on the set of 50 interactive fiction games. Finally, we show that our agent plays on a level comparable to the winner of the last year Text-Based Adventure AI Competition

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    corecore