2 research outputs found

    Most vital segment barriers

    Get PDF
    We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases

    Playing repeated network interdiction games with semi-bandit feedback

    No full text
    We study repeated network interdiction games with no prior knowledge of the adversary and the environment, which can model many real world network security domains. Existing works often require plenty of available information for the defender and neglect the frequent interactions between both players, which are unrealistic and impractical, and thus, are not suitable for our settings. As such, we provide the first defender strategy, that enjoys nice theoretical and practical performance guarantees, by applying the adversarial online learning approach. In particular, we model the repeated network interdiction game with no prior knowledge as an online linear optimization problem, for which a novel and efficient online learning algorithm, SBGA, is proposed, which exploits the unique semi-bandit feedback in network security domains. We prove that SBGA achieves sublinear regret against adaptive adversary, compared with both the best fixed strategy in hindsight and a near optimal adaptive strategy. Extensive experiments also show that SBGA significantly outperforms existing approaches with fast convergence rate
    corecore