713 research outputs found

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    Dynamic Face Video Segmentation via Reinforcement Learning

    Full text link
    For real-time semantic video segmentation, most recent works utilised a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem and learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baselines in terms of both effective key selections and running speed. Further results on the Cityscapes dataset demonstrate that our proposed method can also generalise to other scenarios. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos.Comment: CVPR 2020. 300VW with segmentation labels is available at: https://github.com/mapleandfire/300VW-Mas

    Creating autonomous adaptive agents in a real-time first-person shooter computer game

    Get PDF

    NPC AI System Based on Gameplay Recordings

    Get PDF
    HĂ€sti optimeeritud mitte-mĂ€ngija tegelased (MMT) on vastaste vĂ”i meeskonna kaaslastena ĂŒheks peamiseks osaks mitme mĂ€ngija mĂ€ngudes. Enamus mĂ€nguroboteid on ehitatud jĂ€ikade sĂŒsteemide peal, mis vĂ”imaldavad vaid loetud arvu otsuseid ja animatsioone. Kogenud mĂ€ngijad suudavad eristada mĂ€nguroboteid inimmĂ€ngijatest ning ette ennustada nende liigutusi ja strateegiaid. See alandab mĂ€ngukogemuse kvaliteeti. SeetĂ”ttu, eelistavad mitme mĂ€ngijaga mĂ€ngude mĂ€ngijad mĂ€ngida pigem inimmĂ€ngijate kui MMTde vastu. Virtuaalreaalsuse (VR) mĂ€ngud ja VR mĂ€ngijad on siiani veel vĂ€ike osa mĂ€ngutööstusest ja mitme mĂ€ngija VR mĂ€ngud kannatavad mĂ€ngijabaasi kaotusest, kui mĂ€nguomanikud ei suuda leida teisi mĂ€ngijaid, kellega mĂ€ngida. See uurimus demonstreerib mĂ€ngulindistustel pĂ”hineva tehisintellekt (TI) sĂŒsteemi rakendatavust VR esimese isiku vaates tulistamismĂ€ngule Vrena. TeemamĂ€ng kasutab ebatavalist liikumisesĂŒsteemi, milles mĂ€ngijad liiguvad otsiankrute abil. VR mĂ€ngijate liigutuste imiteerimiseks loodi AI sĂŒsteem, mis kasutab mĂ€ngulindistusi navigeerimisandmetena. SĂŒsteem koosneb kolmest peamisest funktsionaalsusest. Need funktsionaalsused on mĂ€ngutegevuse lindistamine, andmete töötlemine ja navigeerimine. MĂ€ngu keskkond on tĂŒkeldatud kuubikujulisteks sektoriteks, et vĂ€hendada erinevate asukohal pĂ”hinevate olekute arvu ning mĂ€ngutegevus on lindistatud ajaintervallide ja tegevuste pĂ”hjal. Loodud mĂ€ngulogid on segmenteeritud logilĂ”ikudeks ning logilĂ”ikude abil on loodud otsingutabel. Otsingutabelit kasutatakse MMT agentide navigeerimiseks ning MMTde otsuste langetamise mehanism jĂ€ljendab olek-tegevus-tasu kontseptsiooni. Loodud töövahendi kvaliteeti hinnati uuringu pĂ”hjal, millest saadi mĂ€rkimisvÀÀrset tagasisidet sĂŒsteemi tĂ€iustamiseks.A well optimized Non-Player Character (NPC) as an opponent or a teammate is a major part of the multiplayer games. Most of the game bots are built upon a rigid system with numbered decisions and animations. Experienced players can distinguish bots from hu-man players and they can predict bot movements and strategies. This reduces the quality of the gameplay experience. Therefore, multiplayer game players favour playing against human players rather than NPCs. VR game market and VR gamers are still a small frac-tion of the game industry and multiplayer VR games suffer from loss of their player base if the game owners cannot find other players to play with. This study demonstrates the applicability of an Artificial Intelligence (AI) system based on gameplay recordings for a Virtual Reality (VR) First-person Shooter (FPS) game called Vrena. The subject game has an uncommon way of movement, in which the players use grappling hooks to navigate. To imitate VR players’ movements and gestures an AI system is developed which uses gameplay recordings as navigation data. The system contains three major functionality. These functionalities are gameplay recording, data refinement, and navigation. The game environment is sliced into cubic sectors to reduce the number of positional states and gameplay is recorded by time intervals and actions. Produced game logs are segmented into log sections and these log sections are used for creating a look-up table. The lookup table is used for navigating the NPC agent and the decision mechanism followed a way similar to the state-action-reward concept. The success of the developed tool is tested via a survey, which provided substantial feedback for improving the system
    • 

    corecore