3 research outputs found

    Reinforcement Learning with Goal-Distance Gradient

    Full text link
    Reinforcement learning usually uses the feedback rewards of environmental to train agents. But the rewards in the actual environment are sparse, and even some environments will not rewards. Most of the current methods are difficult to get good performance in sparse reward or non-reward environments. Although using shaped rewards is effective when solving sparse reward tasks, it is limited to specific problems and learning is also susceptible to local optima. We propose a model-free method that does not rely on environmental rewards to solve the problem of sparse rewards in the general environment. Our method use the minimum number of transitions between states as the distance to replace the rewards of environmental, and proposes a goal-distance gradient to achieve policy improvement. We also introduce a bridge point planning method based on the characteristics of our method to improve exploration efficiency, thereby solving more complex tasks. Experiments show that our method performs better on sparse reward and local optimal problems in complex environments than previous work

    Fever Basketball: A Complex, Flexible, and Asynchronized Sports Game Environment for Multi-agent Reinforcement Learning

    Full text link
    The development of deep reinforcement learning (DRL) has benefited from the emergency of a variety type of game environments where new challenging problems are proposed and new algorithms can be tested safely and quickly, such as Board games, RTS, FPS, and MOBA games. However, many existing environments lack complexity and flexibility and assume the actions are synchronously executed in multi-agent settings, which become less valuable. We introduce the Fever Basketball game, a novel reinforcement learning environment where agents are trained to play basketball game. It is a complex and challenging environment that supports multiple characters, multiple positions, and both the single-agent and multi-agent player control modes. In addition, to better simulate real-world basketball games, the execution time of actions differs among players, which makes Fever Basketball a novel asynchronized environment. We evaluate commonly used multi-agent algorithms of both independent learners and joint-action learners in three game scenarios with varying difficulties, and heuristically propose two baseline methods to diminish the extra non-stationarity brought by asynchronism in Fever Basketball Benchmarks. Besides, we propose an integrated curricula training (ICT) framework to better handle Fever Basketball problems, which includes several game-rule based cascading curricula learners and a coordination curricula switcher focusing on enhancing coordination within the team. The results show that the game remains challenging and can be used as a benchmark environment for studies like long-time horizon, sparse rewards, credit assignment, and non-stationarity, etc. in multi-agent settings.Comment: 7 pages,12 figure

    Learning to Play Imperfect-Information Games by Imitating an Oracle Planner

    Full text link
    We consider learning to play multiplayer imperfect-information games with simultaneous moves and large state-action spaces. Previous attempts to tackle such challenging games have largely focused on model-free learning methods, often requiring hundreds of years of experience to produce competitive agents. Our approach is based on model-based planning. We tackle the problem of partial observability by first building an (oracle) planner that has access to the full state of the environment and then distilling the knowledge of the oracle to a (follower) agent which is trained to play the imperfect-information game by imitating the oracle's choices. We experimentally show that planning with naive Monte Carlo tree search does not perform very well in large combinatorial action spaces. We therefore propose planning with a fixed-depth tree search and decoupled Thompson sampling for action selection. We show that the planner is able to discover efficient playing strategies in the games of Clash Royale and Pommerman and the follower policy successfully learns to implement them by training on a few hundred battles
    corecore