8,863 research outputs found

    Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

    Full text link
    Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Get PDF
    The operation of groups of heavy-duty vehicles (HDVs) at a small inter-vehicular distance (known as platoon) allows to lower the overall aerodynamic drag and, therefore, to reduce fuel consumption and greenhouse gas emissions. However, due to the large mass and limited engine power of HDVs, slopes have a significant impact on the feasible and optimal speed profiles that each vehicle can and should follow. Therefore maintaining a short inter-vehicular distance as required by platooning without coordination between vehicles can often result in inefficient or even unfeasible trajectories. In this paper we propose a two-layer control architecture for HDV platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon. Here, the layers are responsible for the inclusion of preview information on road topography and the real-time control of the vehicles, respectively. Within this architecture, dynamic programming is used to compute the fuel-optimal speed profile for the entire platoon and a distributed model predictive control framework is developed for the real-time control of the vehicles. The effectiveness of the proposed controller is analyzed by means of simulations of several realistic scenarios that suggest a possible fuel saving of up to 12% for the follower vehicles compared to the use of standard platoon controllers.Comment: 16 pages, 16 figures, submitted to journa

    Analyzing Attacks on Cooperative Adaptive Cruise Control (CACC)

    Full text link
    Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.Comment: 8 pages (author version), 5 Figures, Accepted at 2017 IEEE Vehicular Networking Conference (VNC
    corecore