702,499 research outputs found
Regulation of Neuromodulator Receptor Efficacy - Implications for Whole-Neuron and Synaptic Plasticity
Membrane receptors for neuromodulators (NM) are highly regulated in their
distribution and efficacy - a phenomenon which influences the individual cell's
response to central signals of NM release. Even though NM receptor regulation
is implicated in the pharmacological action of many drugs, and is also known to
be influenced by various environmental factors, its functional consequences and
modes of action are not well understood. In this paper we summarize relevant
experimental evidence on NM receptor regulation (specifically dopamine D1 and
D2 receptors) in order to explore its significance for neural and synaptic
plasticity. We identify the relevant components of NM receptor regulation
(receptor phosphorylation, receptor trafficking and sensitization of
second-messenger pathways) gained from studies on cultured cells. Key
principles in the regulation and control of short-term plasticity
(sensitization) are identified, and a model is presented which employs direct
and indirect feedback regulation of receptor efficacy. We also discuss
long-term plasticity which involves shifts in receptor sensitivity and loss of
responsivity to NM signals. Finally, we discuss the implications of NM receptor
regulation for models of brain plasticity and memorization. We emphasize that a
realistic model of brain plasticity will have to go beyond Hebbian models of
long-term potentiation and depression. Plasticity in the distribution and
efficacy of NM receptors may provide another important source of functional
plasticity with implications for learning and memory.Comment: 35 page
Uncoupled material model of ductile fracture with directional plasticity
Proposed paper deals with the application of plastic response with directional distortional hardening (DDH) in uncoupled ductile fracture model and comparison of the results with the same ductile fracture model based on isotropic J2 plasticity. The results of simulations have proven not negligible role of model of plasticity and the response of the model with DDH plasticity is closer to reality then the one of the model with isotropic plasticity
Tool use induces complex and flexible plasticity of human body representations
Plasticity of body representation fundamentally underpins human tool use. Recent studies have demonstrated remarkably complex plasticity of body representation in humans, showing that such plasticity: (1) occurs flexibly across multiple time-scales, and (2) involves multiple body representations responding differently to tool use. Such findings reveal remarkable sophistication of body plasticity in humans, suggesting that Vaesen may overestimate the similarity of such mechanisms in humans and non-human primates
Maladaptive plasticity in levodopa-induced dyskinesias and tardive dyskinesias: old and new insights on the effects of dopamine receptor pharmacology.
Maladaptive plasticity can be defined as behavioral loss or even development of disease symptoms resulting from aberrant plasticity changes in the human brain. Hyperkinetic movement disorders, in the neurological or psychiatric realms, have been associated with maladaptive neural plasticity that can be expressed by functional changes such as an increase in transmitter release, receptor regulation, and synaptic plasticity or anatomical modifications such as axonal regeneration, sprouting, synaptogenesis, and neurogenesis. Recent evidence from human and animal models provided support to the hypothesis that these phenomena likely depend on altered dopamine turnover induced by long-term drug treatment. However, it is still unclear how and where these altered mechanisms of cortical plasticity may be localized. This study provides an up-to-date overview of these issues together with some reflections on future studies in the field, particularly focusing on two specific disorders (levodopa-induced dyskinesias in Parkinson's disease patients and tardive dyskinesias in schizophrenic patients) where the modern neuroimaging approaches have recently provided new fundamental insights
Plasticity and dystonia: a hypothesis shrouded in variability.
Studying plasticity mechanisms with Professor John Rothwell was a shared highlight of our careers. In this article, we discuss non-invasive brain stimulation techniques which aim to induce and quantify plasticity, the mechanisms and nature of their inherent variability and use such observations to review the idea that excessive and abnormal plasticity is a pathophysiological substrate of dystonia. We have tried to define the tone of our review by a couple of Professor John Rothwell's many inspiring characteristics; his endless curiosity to refine knowledge and disease models by scientific exploration and his wise yet humble readiness to revise scientific doctrines when the evidence is supportive. We conclude that high variability of response to non-invasive brain stimulation plasticity protocols significantly clouds the interpretation of historical findings in dystonia research. There is an opportunity to wipe the slate clean of assumptions and armed with an informative literature in health, re-evaluate whether excessive plasticity has a causal role in the pathophysiology of dystonia
The conceptual structure of evolutionary biology: A framework from phenotypic plasticity
In this review, I approach the role of phenotypic plasticity as a key aspect of the conceptual framework of evolutionary biology. The concept of phenotypic plasticity is related to other relevant concepts of contemporary research in evolutionary biology, such as assimilation, genetic accommodation and canalization, evolutionary robustness, evolvability, evolutionary capacitance and niche construction. Although not always adaptive, phenotypic plasticity can promote the integration of these concepts to represent some of the dynamics of evolution, which can be visualized through the use of a conceptual map. Although the use of conceptual maps is common in areas of knowledge such as psychology and education, their application in evolutionary biology can lead to a better understanding of the processes and conceptual interactions of the complex dynamics of evolution. The conceptual map I present here includes environmental variability and variation, phenotypic plasticity and natural selection as key concepts in evolutionary biology. The evolution of phenotypic plasticity is important to ecology at all levels of organization, from morphological, physiological and behavioral adaptations that influence the distribution and abundance of populations to the structuring of assemblages and communities and the flow of energy through trophic levels. Consequently, phenotypic plasticity is important for maintaining ecological processes and interactions that influence the complexity of biological diversity. In addition, because it is a typical occurrence and manifests itself through environmental variation in conditions and resources, plasticity must be taken into account in the development of management and conservation strategies at local and global levels
Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis
We unravel how functional plasticity and redundancy are essential mechanisms
underlying the ability to survive of metabolic networks. We perform an
exhaustive computational screening of synthetic lethal reaction pairs in
Escherichia coli in a minimal medium and we find that synthetic lethal pairs
divide in two different groups depending on whether the synthetic lethal
interaction works as a backup or as a parallel use mechanism, the first
corresponding to essential plasticity and the second to essential redundancy.
In E. coli, the analysis of pathways entanglement through essential redundancy
supports the view that synthetic lethality affects preferentially a single
function or pathway. In contrast, essential plasticity, the dominant class,
tends to be inter-pathway but strongly localized and unveils Cell Envelope
Biosynthesis as an essential backup for Membrane Lipid Metabolism. When
comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic
networks of the two organisms exhibit a large difference in the relative
importance of plasticity and redundancy which is consistent with the conjecture
that plasticity is a sophisticated mechanism that requires a complex
organization. Finally, coessential reaction pairs are explored in different
environmental conditions to uncover the interplay between the two mechanisms.
We find that synthetic lethal interactions and their classification in
plasticity and redundancy are basically insensitive to medium composition, and
are highly conserved even when the environment is enriched with nonessential
compounds or overconstrained to decrease maximum biomass formation.Comment: 22 pages, 4 figure
Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.
Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought
State based model of long-term potentiation and synaptic tagging and capture
Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory
- …
