213,487 research outputs found
SUMMA hot-ion plasma heating research at NASA Lewis Research Center
The SUMMA superconducting magnetic mirror facility and the associated hot-ion plasma research were described. SUMMA is characterized by intense magnetic fields and a large-diameter working bore (41 cm diameter) with room-temperature access. The goal of the plasma research program is to produce steady-state plasmas of fusion reactor densities and temperatures (but not confinement times). The program includes electrode development to produce a hot, dense, large-volume, steady-state plasma and diagnostics development to document the plasma properties. SUMMA and its hot-ion plasma are ideally suited to develop advanced plasma diagnostics methods. Two such methods whose requirements are well matched to SUMMA are: (1) heavy ion beam probing to measure plasma space potential; and (2) submillimeter wavelength laser Thomson scattering to measure local ion temperature
Conceptual design of electron beam diagnostics for high brightness plasma accelerator
A design study of the diagnostics of a high brightness linac, based on X-band
structures, and a plasma accelerator stage, has been delivered in the framework
of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual
design of the proposed diagnostics, using state of the art systems and new and
under development devices. Single shot measurements are preferable for plasma
accelerated beams, including emittance, while m level and fs scale beam
size and bunch length respectively are requested. The needed to separate the
driver pulse (both laser or beam) from the witness accelerated bunch imposes
additional constrains for the diagnostics. We plan to use betatron radiation
for the emittance measurement just at the end of the plasma booster, while
other single-shot methods must be proven before to be implemented. Longitudinal
measurements, being in any case not trivial for the fs level bunch length, seem
to have already a wider range of possibilities
Recoverable Plasma Diagnostics Package (RPDP)
The recoverable plasma diagnostics package (RPDP) is an ejectable and recoverable satellite with flight and ground support systems so that it can be utilized in three modes: attached to an remote manipulator system; tethered; or as a subsatellite. The satellite is well instrumented with particle and field diagnostic as well as optical sensors to: investigate the dynamics of the natural environment or ejected perturbations from particle beams; measure the characteristics and propagation of electrostatic and electromagnetic waves; study wave particle interactions; and study natural properties of the magnetosphere, ionosphere, and upper atmosphere
Recoverable Plasma Diagnostics Package (RPDP)
The recoverable plasma diagnostics package (RPDP) is an ejectable and recoverable satellite with flight and ground support systems so that it can be utilized in three modes: attached to an remote manipulator system; tethered; or as a subsatellite. The satellite is well instrumented with particle and field diagnostic as well as optical sensors to: investigate the dynamics of the natural environment or ejected perturbations from particle beams; measure the characteristics and propagation of electrostatic and electromagnetic waves; study wave particle interactions; and study natural properties of the magnetosphere, ionosphere, and upper atmosphere
Collisional-Radiative Model for the visible spectrum of ions
Plasma diagnostics in magnetic confinement fusion plasmas by using visible
spectrum strongly depends on the knowledge of fundamental atomic properties. A
detailed collisional-radiative model of W ions has been constructed by
considering radiative and electron excitation processes, in which the necessary
atomic data had been calculated by relativistic configuration interaction
method with the implementation of Flexible Atomic Code. The visible spectrum
observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm
to 392 nm was reproduced by present calculations. Some transition pairs of
which the intensity ratio are sensitive to the electron density were selected
as potential candidate of plasma diagnostics. Their electron density dependence
are theoretically evaluated for the cases of EBIT plasmas and magnetic
confinement fusion plasmas
Prominence plasma diagnostics through EUV absorption
In this paper we introduce a new diagnostic technique that uses prominence
EUV and UV absorption to determine the prominence plasma electron temperature
and column emission measure, as well as He/H relative abundance; if a realistic
assumption on the geometry of the absorbing plasma can be made, this technique
can also yield the absorbing plasma electron density. This technique
capitalizes on the absorption properties of Hydrogen and Helium at different
wavelength ranges and temperature regimes. Several cases where this technique
can be successfully applied are described. This technique works best when
prominence plasmas are hotter than 15,000 K and thus it is ideally suited for
rapidly heating erupting prominences observed during the initial phases of
coronal mass ejections. An example is made using simulated intensities of 4
channels of the SDO/AIA instrument. This technique can be easily applied to
existing observations from almost all space missions devoted to the study of
the solar atmosphere, which we list.Comment: 17 pages, 4 figures, submitted to Ap
Chandra HETGS Multiphase Spectroscopy Of The Young Magnetic O Star Theta(1) Orionis C
We report on four Chandra grating observations of the oblique magnetic rotator theta(1) Ori C (O5.5 V), covering a wide range of viewing angles with respect to the star\u27s 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray - emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta(1) Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray - emitting plasma with rotation phase
Ionization Equilibrium Timescales in Collisional Plasmas
Astrophysical shocks or bursts from a photoionizing source can disturb the
typical collisional plasma found in galactic interstellar media or the
intergalactic medium. The spectrum emitted by this plasma contains diagnostics
that have been used to determine the time since the disturbing event, although
this determination becomes uncertain as the elements in the plasma return to
ionization equilibrium. A general solution for the equilibrium timescale for
each element arises from the elegant eigenvector method of solution to the
problem of a non-equilibrium plasma described by Masai (1984) and Hughes &
Helfand (1985). In general the ionization evolution of an element Z in a
constant electron temperature plasma is given by a coupled set of Z+1 first
order differential equations. However, they can be recast as Z uncoupled first
order differential equations using an eigenvector basis for the system. The
solution is then Z separate exponential functions, with the time constants
given by the eigenvalues of the rate matrix. The smallest of these eigenvalues
gives the scale of slowest return to equilibrium independent of the initial
conditions, while conversely the largest eigenvalue is the scale of the fastest
change in the ion population. These results hold for an ionizing plasma, a
recombining plasma, or even a plasma with random initial conditions, and will
allow users of these diagnostics to determine directly if their best-fit result
significantly limits the timescale since a disturbance or is so close to
equilibrium as to include an arbitrarily-long time.Comment: 4 pages, 2 figures. Accepted for publication by the Astrophysical
Journa
- …
