1,121,619 research outputs found

    Plasma cleaning device

    Get PDF
    High vacuum cleaning of contaminated surfaces such as hydrocarbon containment films can be accomplished by a plasma cleaning device which includes a plasma discharge housing to permit generation of a plasma in an environment having a higher pressure than the surface which is to be cleaned. A ground electrode and a radio frequency electrode partially surround a quartz plasma tube, for the introduction of an ionizable gas. These electrodes ionize the gas and help generate the plasma. This plasma flows through a non-constrictive aperture, through the plasma discharge housing and then on to the contaminated surface

    Self-energized plasma compressor

    Get PDF
    The self-energized plasma compressor is described which compresses plasma discharged from a coaxial plasma generator. The device includes a helically shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that creates a force which acts radially upon the plasma. The coaxial plasma generator and helical coil move the plasma under high pressure and temperature to the narrow end of the coil. Positioned adjacent to the narrow end of the coil are beads which are engaged by the plasma to be accelerated to hypervelocities for simulating meteoroids

    Plasma kinetic theory

    Get PDF
    The description of plasma using fluid model is mostly insufficient and requires the consideration of velocity distribution which leads to kinetic theory. Kinetic theory of plasma describes and predicts the condition of plasma from microscopic interactions and motions of its constituents. It provides an essential basis for an introductory course on plasma physics as well as for advanced kinetic theory. Plasma kinetics deals with the relationship between velocity and forces and the study of continua in velocity space. Plasma kinetics mathematical equations provide aid to the readers in understanding simple tools to determine the plasma dynamics and kinetics as described in this chapter. Kinetic theory provides the basics and essential introduction to plasma physics and subsequently advanced kinetic theory. Plasma waves, oscillations, frequencies, and applications are the subjects of kinetic theory. In this chapter, mathematical formulations essential for exploring plasma kinetics are compiled and described simplistically along with a precise discussion on basic plasma parameters in simple language with illustrations in some cases

    Ion motion in the wake driven by long particle bunches in plasmas

    Get PDF
    We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ J. Dawson's plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunch limit. We use these results to determine the on-set of the ion dynamics, and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas.Comment: 23 pages, 6 figure

    Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    Full text link
    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutral atoms generates X-ray emission. We assume typical abundance of heavy ions for the Local Bubble plasma and estimate the X-ray emissivity due to charge exchange from the interface between cold neutral cloud and hot plasma. Our results show that charge exchange X-ray emission from the neutral-plasma interfaces can be a non-negligible fraction of the observed X-ray emission.Comment: 9 pages, 7 figure
    • …
    corecore