722 research outputs found

    A MULTI-COMMODITY NETWORK FLOW APPROACH FOR SEQUENCING REFINED PRODUCTS IN PIPELINE SYSTEMS

    Get PDF
    In the oil industry, there is a special class of pipelines used for the transportation of refined products. The problem of sequencing the inputs to be pumped through this type of pipeline seeks to generate the optimal sequence of batches of products and their destination as well as the amount of product to be pumped such that the total operational cost of the system, or another operational objective, is optimized while satisfying the product demands according to the requirements set by the customers. This dissertation introduces a new modeling approach and proposes a solution methodology for this problem capable of dealing with the topology of all the scenarios reported in the literature so far. The system representation is based on a 1-0 multi commodity network flow formulation that models the dynamics of the system, including aspects such as conservation of product flow constraints at the depots, travel time of products from the refinery to their depot destination and what happens upstream and downstream the line whenever a product is being received at a given depot while another one is being injected into the line at the refinery. It is assumed that the products are already available at the refinery and their demand at each depot is deterministic and known beforehand. The model provides the sequence, the amounts, the destination and the trazability of the shipped batches of different products from their sources to their destinations during the entire horizon planning period while seeking the optimization of pumping and inventory holding costs satisfying the time window constraints. A survey for the available literature is presented. Given the problem structure, a decomposition based solution procedure is explored with the intention of exploiting the network structure using the network simplex method. A branch and bound algorithm that exploits the dynamics of the system assigning priorities for branching to a selected set of variables is proposed and its computational results for the solution, obtained via GAMS/CPLEX, of the formulation for random instances of the problem of different sizes are presented. Future research directions on this field are proposed

    Drivers of natural gas price divergence between NBP and TTF in 2022

    Get PDF
    The European gas market has undergone substantial transformations and fluctuations in recent years, resulting in a decoupling in natural gas prices between trading hubs in 2022. Specifically, the Title Transfer Facility (TTF) in the Netherlands and the National Balancing Point (NBP) in the United Kingdom experienced large deviations. Utilization of liquefied natural gas (LNG) as a supplement to pipeline imports has increased significantly after discontinuation of gas trade between Europe and Russia. The European gas market experienced constraints in supply and demand due to various factors, leading to elevated prices. The United Kingdom encountered a significant storage capacity crisis, necessitating the export of surplus natural gas to the Netherlands. The study of the natural gas market implemented a combination of qualitative and quantitative methodologies, including the utilization of Vector Auto-Regression (VAR) models, correlation-, cointegration-, and Granger causality analysis. As Europe sought to replace the Russian gas supply with LNG, the Netherlands' relatively low LNG import capacity hindered the country to fully exploit the expanded use of LNG. Furthermore, pipeline maintenance on the Netherlands' connections to Norwegian gas, coupled with the surplus gas in the UK, resulted in capacity constraints on the direct pipeline connection between NBP and TTF. The fundamental economic theory of supply and demand demonstrated how the shortage of supply in the Netherlands generated higher prices for natural gas in the country. The exhaustion of storage facilities in the UK contributed to limits on arbitrage, causing downward price spikes in the NBP compared to TTF, as predicted by storage theory. Data analysis revealed that although the European gas market traditionally functioned as a highly integrated and efficient market, it became disjointed and less efficient in 2022, thereby increasing market predictability. The study's outcome was accordant to economic theories and findings from the conducted analysis. The findings emphasize the necessity for diversified natural gas supply sources, adequate storage capacity, and efficient transportation infrastructure to ensure a reliable and sustainable gas supply in Europe. In practical terms, the analysis results can potentially assist energy traders and analysts in making more informed decisions regarding gas contracts. By monitoring gas flow through connecting pipelines and analysing storage levels, they can make more accurate predictions about future price movements and adjust their trading strategies accordingly

    Global optimisation of large-scale quadratic programs: application to short-term planning of industrial refinery-petrochemical complexes

    Get PDF
    This thesis is driven by an industrial problem arising in the short-term planning of an integrated refinery-petrochemical complex (IRPC) in Colombia. The IRPC of interest is composed of 60 industrial plants and a tank farm for crude mixing and fuel blending consisting of 30 additional units. It considers both domestic and imported crude oil supply, as well as refined product imports such as low sulphur diesel and alkylate. This gives rise to a large-scale mixed-integer quadratically constrained quadratic program (MIQCQP) comprising about 7,000 equality constraints with over 35,000 bilinear terms and 280 binary variables describing operating modes for the process units. Four realistic planning scenarios are recreated to study the performance of the algorithms developed through the thesis and compare them to commercial solvers. Local solvers such as SBB and DICOPT cannot reliably solve such large-scale MIQCQPs. Usually, it is challenging to even reach a feasible solution with these solvers, and a heuristic procedure is required to initialize the search. On the other hand, global solvers such as ANTIGONE and BARON determine a feasible solution for all the scenarios analysed, but they are unable to close the relaxation gap to less than 40% on average after 10h of CPU runtime. Overall, this industrial-size problem is thus intractable to global optimality in a monolithic way. The first main contribution of the thesis is a deterministic global optimisation algorithm based on cluster decomposition (CL) that divides the network into groups of process units according to their functionality. The algorithm runs through the sequences of clusters and proceeds by alternating between: (i) the (global) solution of a mixed-integer linear program (MILP), obtained by relaxing the bilinear terms based on their piecewise McCormick envelopes and a dynamic partition of their variable ranges, in order to determine an upper bound on the maximal profit; and (ii) the local solution of a quadratically-constrained quadratic program (QCQP), after fixing the binary variables and initializing the continuous variables to the relaxed MILP solution point, in order to determine a feasible solution (lower bound on the maximal profit). Applied to the base case scenario, the CL approach reaches a best solution of 2.964 MMUSD/day and a relaxation gap of 7.5%, a remarkable result for such challenging MIQCQP problem. The CL approach also vastly outperforms both ANTIGONE (2.634 MMUSD/day, 32% optimality gap) and BARON (2.687 MMUSD/day, 40% optimality gap). The second main contribution is a spatial Lagrangean decomposition, which entails decomposing the IRPC short-term planning problem into a collection of smaller subproblems that can be solved independently to determine an upper bound on the maximal profit. One advantage of this strategy is that each sub-problem can be solved to global optimality, potentially providing good initial points for the monolithic problem itself. It furthermore creates a virtual market for trading crude blends and intermediate refined–petrochemical streams and seeks an optimal trade-off in such a market, with the Lagrange multipliers acting as transfer prices. A decomposition over two to four is considered, which matches the crude management, refinery, petrochemical operations, and fuel blending sections of the IRPC. An optimality gap below 4% is achieved in all four scenarios considered, which is a significant improvement over the cluster decomposition algorithm.Open Acces

    Impact of New Madrid Seismic Zone Earthquakes on the Central USA, Vol. 1 and 2

    Get PDF
    The information presented in this report has been developed to support the Catastrophic Earthquake Planning Scenario workshops held by the Federal Emergency Management Agency. Four FEMA Regions (Regions IV, V, VI and VII) were involved in the New Madrid Seismic Zone (NMSZ) scenario workshops. The four FEMA Regions include eight states, namely Illinois, Indiana, Kentucky, Tennessee, Alabama, Mississippi, Arkansas and Missouri. The earthquake impact assessment presented hereafter employs an analysis methodology comprising three major components: hazard, inventory and fragility (or vulnerability). The hazard characterizes not only the shaking of the ground but also the consequential transient and permanent deformation of the ground due to strong ground shaking as well as fire and flooding. The inventory comprises all assets in a specific region, including the built environment and population data. Fragility or vulnerability functions relate the severity of shaking to the likelihood of reaching or exceeding damage states (light, moderate, extensive and near-collapse, for example). Social impact models are also included and employ physical infrastructure damage results to estimate the effects on exposed communities. Whereas the modeling software packages used (HAZUS MR3; FEMA, 2008; and MAEviz, Mid-America Earthquake Center, 2008) provide default values for all of the above, most of these default values were replaced by components of traceable provenance and higher reliability than the default data, as described below. The hazard employed in this investigation includes ground shaking for a single scenario event representing the rupture of all three New Madrid fault segments. The NMSZ consists of three fault segments: the northeast segment, the reelfoot thrust or central segment, and the southwest segment. Each segment is assumed to generate a deterministic magnitude 7.7 (Mw7.7) earthquake caused by a rupture over the entire length of the segment. US Geological Survey (USGS) approved the employed magnitude and hazard approach. The combined rupture of all three segments simultaneously is designed to approximate the sequential rupture of all three segments over time. The magnitude of Mw7.7 is retained for the combined rupture. Full liquefaction susceptibility maps for the entire region have been developed and are used in this study. Inventory is enhanced through the use of the Homeland Security Infrastructure Program (HSIP) 2007 and 2008 Gold Datasets (NGA Office of America, 2007). These datasets contain various types of critical infrastructure that are key inventory components for earthquake impact assessment. Transportation and utility facility inventories are improved while regional natural gas and oil pipelines are added to the inventory, alongside high potential loss facility inventories. The National Bridge Inventory (NBI, 2008) and other state and independent data sources are utilized to improve the inventory. New fragility functions derived by the MAE Center are employed in this study for both buildings and bridges providing more regionally-applicable estimations of damage for these infrastructure components. Default fragility values are used to determine damage likelihoods for all other infrastructure components. The study reports new analysis using MAE Center-developed transportation network flow models that estimate changes in traffic flow and travel time due to earthquake damage. Utility network modeling was also undertaken to provide damage estimates for facilities and pipelines. An approximate flood risk model was assembled to identify areas that are likely to be flooded as a result of dam or levee failure. Social vulnerability identifies portions of the eight-state study region that are especially vulnerable due to various factors such as age, income, disability, and language proficiency. Social impact models include estimates of displaced and shelter-seeking populations as well as commodities and medical requirements. Lastly, search and rescue requirements quantify the number of teams and personnel required to clear debris and search for trapped victims. The results indicate that Tennessee, Arkansas, and Missouri are most severely impacted. Illinois and Kentucky are also impacted, though not as severely as the previous three states. Nearly 715,000 buildings are damaged in the eight-state study region. About 42,000 search and rescue personnel working in 1,500 teams are required to respond to the earthquakes. Damage to critical infrastructure (essential facilities, transportation and utility lifelines) is substantial in the 140 impacted counties near the rupture zone, including 3,500 damaged bridges and nearly 425,000 breaks and leaks to both local and interstate pipelines. Approximately 2.6 million households are without power after the earthquake. Nearly 86,000 injuries and fatalities result from damage to infrastructure. Nearly 130 hospitals are damaged and most are located in the impacted counties near the rupture zone. There is extensive damage and substantial travel delays in both Memphis, Tennessee, and St. Louis, Missouri, thus hampering search and rescue as well as evacuation. Moreover roughly 15 major bridges are unusable. Three days after the earthquake, 7.2 million people are still displaced and 2 million people seek temporary shelter. Direct economic losses for the eight states total nearly $300 billion, while indirect losses may be at least twice this amount. The contents of this report provide the various assumptions used to arrive at the impact estimates, detailed background on the above quantitative consequences, and a breakdown of the figures per sector at the FEMA region and state levels. The information is presented in a manner suitable for personnel and agencies responsible for establishing response plans based on likely impacts of plausible earthquakes in the central USA.Armu W0132T-06-02unpublishednot peer reviewe

    An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers

    Full text link
    In energy systems with high shares of weather-driven renewable power sources, gas-fired power plants can serve as a back-up technology to ensure security of supply and provide short-term flexibility. Therefore, a tighter coordination between electricity and natural gas networks is foreseen. In this work, we examine different levels of coordination in terms of system integration and time coupling of trading floors. We propose an integrated operational model for electricity and natural gas systems under uncertain power supply by applying two-stage stochastic programming. This formulation co-optimizes day-ahead and real-time dispatch of both energy systems and aims at minimizing the total expected cost. Additionally, two deterministic models, one of an integrated energy system and one that treats the two systems independently, are presented. We utilize a formulation that considers the linepack of the natural gas system, while it results in a tractable mixed-integer linear programming (MILP) model. Our analysis demonstrates the effectiveness of the proposed model in accommodating high shares of renewables and the importance of proper natural gas system modeling in short-term operations to reveal valuable flexibility of the natural gas system. Moreover, we identify the coordination parameters between the two markets and show their impact on the system's operation and dispatch

    SOLUTION TO A PIPELINE SCHEDULING PROBLEM BY USING A MIXED INTEGER LINEAR PROGRAMMING MODEL

    Get PDF
    Pipelines are efficient ways of conveying huge amounts of refined petroluem products to distant points. Different products are pumped successively, in the pipelines without a need of a separator between them. Pipelines should be chosen very carefully based on the pumping sequences, volumes to be conveyed, covering the constraints involved by cutting operational costs and focusing on market demands. The real life problem considered in this study consists of a unidirectional pipe distribution system used for pumping petroleum products between the sources and distribution centers.  . Problem was stated as a Mixed Integer Linear Programming (MILP) model and solved by using GAMS software thorough actual data. As a result of the study, an optimal pumping schedule for pipeline operations at a certain period of time was achieved

    Assessment of Lagrangean decomposition for short-term planning of integrated refinery-petrochemical operations

    Get PDF
    We present an integrated methodology for optimal short-term planning of integrated refinery-petrochemical complexes (IRPCs) and demonstrate it on a full-scale industrial case study under four realistic planning scenarios. The large-scale mixed-integer quadratically constrained optimization models are amenable to a spatial Lagrangean decomposition through dividing the IRPC into multiple subsections, which comprise crude management, refinery, fuel blending, and petrochemical production. The decomposition algorithm creates virtual markets for trading crude blends and intermediate petrochemical streams within the IRPC and seeks an optimal tradeoff in such markets, with the Lagrange multipliers acting as transfer prices. The best results are obtained for decompositions with two or three subsections, achieving optimality gaps below 4% in all four planning scenarios. The Lagrangean decomposition provides tighter primal and dual bounds than the global solvers BARON and ANTIGONE, and it also improves the dual bounds computed using piecewise linear relaxation strategies

    Logistic system design of an underground freight pipeline system

    Get PDF
    "July 2014."Dissertation Supervisor: Dr. James Noble.Includes vita.Underground Freight Pipeline (UFP) systems utilize the underground space in metro areas that is otherwise not utilized for freight transportation. Two fundamental logistics issues in the design of a UFP system are network configuration and capsule control. This research develops two capsule control models that minimize total tardiness squared of cargo delivery and associated heuristic algorithms to solve large-scale problems. Two network design models are introduced that minimizes both operational and construction cost of UFP system. The UFP network design Comprehensive Model can only be solved to optimality for small sized problem. To reduce the computational complexity, the UFP network design Two Step Model that is able to generate high quality network design solutions is developed. Then, a case study of a UFP network design in Greater New York area is presented.Includes bibliographical references (pages 159-162)
    • 

    corecore