23 research outputs found

    Hierarchical planning for multi-contact non-prehensile manipulation

    Get PDF
    Manipulation planning involves planning the combined motion of objects in the environment as well as the robot motions to achieve them. In this paper, we explore a hierarchical approach to planning sequences of non-prehensile and prehensile actions. We subdivide the planning problem into three stages (object contacts, object poses and robot contacts) and thereby reduce the size of search space that is explored. We show that this approach is more efficient than earlier strategies that search in the combined robot-object configuration space directly.National Science Foundation (U.S.) (grant 1420927)United States. Office of Naval Research (grant N00014-14-1-0486)United States. Air Force. Office of Scientific Research (grant FA23861014135)United States. Army Research Office (grant W911NF1410433

    Characterization and study of the primitive dynamic movements required to bi-manipulate a box

    Get PDF
    Automating the action of finding the opening side of a box is not possible if the robot is not capable of reaching and evaluating all of its sides. To achieve this goal, in this paper, three different movement strategies to bi-manipulate a box are studied: overturning, lifting, and spinning it over a surface. First of all, the dynamics involved in each of the three movement strategies are studied using physics equations. Then, a set of experiments are conducted to determine if the real response of the humanoid robot, TEO, to a box is consistent with the expected answer based on theoretical calculus. After the dynamics validation, the information on the forces and the position in the end effectors is used to characterize these movements and create its primitives. These primitive movements will be used in the future to design a hybrid position–force control in order to adapt the movements to different kinds of boxes. The structure of this control is also presented in this pape

    Nonprehensile Dynamic Manipulation: A Survey

    Get PDF
    Nonprehensile dynamic manipulation can be reason- ably considered as the most complex manipulation task. It might be argued that such a task is still rather far from being fully solved and applied in robotics. This survey tries to collect the results reached so far by the research community about planning and control in the nonprehensile dynamic manipulation domain. A discussion about current open issues is addressed as well
    corecore