246 research outputs found

    Sample-based Search Methods for Bayes-Adaptive Planning

    Get PDF
    A fundamental issue for control is acting in the face of uncertainty about the environment. Amongst other things, this induces a trade-off between exploration and exploitation. A model-based Bayesian agent optimizes its return by maintaining a posterior distribution over possible environments, and considering all possible future paths. This optimization is equivalent to solving a Markov Decision Process (MDP) whose hyperstate comprises the agent's beliefs about the environment, as well as its current state in that environment. This corresponding process is called a Bayes-Adaptive MDP (BAMDP). Even for MDPs with only a few states, it is generally intractable to solve the corresponding BAMDP exactly. Various heuristics have been devised, but those that are computationally tractable often perform indifferently, whereas those that perform well are typically so expensive as to be applicable only in small domains with limited structure. Here, we develop new tractable methods for planning in BAMDPs based on recent advances in the solution to large MDPs and general partially observable MDPs. Our algorithms are sample-based, plan online in a way that is focused on the current belief, and, critically, avoid expensive belief updates during simulations. In discrete domains, we use Monte-Carlo tree search to search forward in an aggressive manner. The derived algorithm can scale to large MDPs and provably converges to the Bayes-optimal solution asymptotically. We then consider a more general class of simulation-based methods in which approximation methods can be employed to allow value function estimates to generalize between hyperstates during search. This allows us to tackle continuous domains. We validate our approach empirically in standard domains by comparison with existing approximations. Finally, we explore Bayes-adaptive planning in environments that are modelled by rich, non-parametric probabilistic models. We demonstrate that a fully Bayesian agent can be advantageous in the exploration of complex and even infinite, structured domains

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Reinforcement Learning in Rich-Observation MDPs using Spectral Methods

    Get PDF
    Reinforcement learning (RL) in Markov decision processes (MDPs) with large state spaces is a challenging problem. The performance of standard RL algorithms degrades drastically with the dimensionality of state space. However, in practice, these large MDPs typically incorporate a latent or hidden low-dimensional structure. In this paper, we study the setting of rich-observation Markov decision processes (ROMDP), where there are a small number of hidden states which possess an injective mapping to the observation states. In other words, every observation state is generated through a single hidden state, and this mapping is unknown a priori. We introduce a spectral decomposition method that consistently learns this mapping, and more importantly, achieves it with low regret. The estimated mapping is integrated into an optimistic RL algorithm (UCRL), which operates on the estimated hidden space. We derive finite-time regret bounds for our algorithm with a weak dependence on the dimensionality of the observed space. In fact, our algorithm asymptotically achieves the same average regret as the oracle UCRL algorithm, which has the knowledge of the mapping from hidden to observed spaces. Thus, we derive an efficient spectral RL algorithm for ROMDPs
    corecore