8,477 research outputs found

    Planning from Images with Deep Latent Gaussian Process Dynamics

    Full text link
    Planning is a powerful approach to control problems with known environment dynamics. In unknown environments the agent needs to learn a model of the system dynamics to make planning applicable. This is particularly challenging when the underlying states are only indirectly observable through images. We propose to learn a deep latent Gaussian process dynamics (DLGPD) model that learns low-dimensional system dynamics from environment interactions with visual observations. The method infers latent state representations from observations using neural networks and models the system dynamics in the learned latent space with Gaussian processes. All parts of the model can be trained jointly by optimizing a lower bound on the likelihood of transitions in image space. We evaluate the proposed approach on the pendulum swing-up task while using the learned dynamics model for planning in latent space in order to solve the control problem. We also demonstrate that our method can quickly adapt a trained agent to changes in the system dynamics from just a few rollouts. We compare our approach to a state-of-the-art purely deep learning based method and demonstrate the advantages of combining Gaussian processes with deep learning for data efficiency and transfer learning.Comment: Accepted for publication at the 2nd Annual Conference on Learning for Dynamics and Control (L4DC) 2020, with supplementary material. First two authors contributed equall

    Learning Latent Dynamics for Planning from Pixels

    Full text link
    Planning has been very successful for control tasks with known environment dynamics. To leverage planning in unknown environments, the agent needs to learn the dynamics from interactions with the world. However, learning dynamics models that are accurate enough for planning has been a long-standing challenge, especially in image-based domains. We propose the Deep Planning Network (PlaNet), a purely model-based agent that learns the environment dynamics from images and chooses actions through fast online planning in latent space. To achieve high performance, the dynamics model must accurately predict the rewards ahead for multiple time steps. We approach this using a latent dynamics model with both deterministic and stochastic transition components. Moreover, we propose a multi-step variational inference objective that we name latent overshooting. Using only pixel observations, our agent solves continuous control tasks with contact dynamics, partial observability, and sparse rewards, which exceed the difficulty of tasks that were previously solved by planning with learned models. PlaNet uses substantially fewer episodes and reaches final performance close to and sometimes higher than strong model-free algorithms.Comment: 20 pages, 12 figures, 1 tabl

    Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

    Full text link
    We introduce Embed to Control (E2C), a method for model learning and control of non-linear dynamical systems from raw pixel images. E2C consists of a deep generative model, belonging to the family of variational autoencoders, that learns to generate image trajectories from a latent space in which the dynamics is constrained to be locally linear. Our model is derived directly from an optimal control formulation in latent space, supports long-term prediction of image sequences and exhibits strong performance on a variety of complex control problems.Comment: Final NIPS versio

    Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

    Full text link
    In this paper we study how to learn stochastic, multimodal transition dynamics in reinforcement learning (RL) tasks. We focus on evaluating transition function estimation, while we defer planning over this model to future work. Stochasticity is a fundamental property of many task environments. However, discriminative function approximators have difficulty estimating multimodal stochasticity. In contrast, deep generative models do capture complex high-dimensional outcome distributions. First we discuss why, amongst such models, conditional variational inference (VI) is theoretically most appealing for model-based RL. Subsequently, we compare different VI models on their ability to learn complex stochasticity on simulated functions, as well as on a typical RL gridworld with multimodal dynamics. Results show VI successfully predicts multimodal outcomes, but also robustly ignores these for deterministic parts of the transition dynamics. In summary, we show a robust method to learn multimodal transitions using function approximation, which is a key preliminary for model-based RL in stochastic domains.Comment: Scaling Up Reinforcement Learning (SURL) Workshop @ European Machine Learning Conference (ECML

    Robust Locally-Linear Controllable Embedding

    Full text link
    Embed-to-control (E2C) is a model for solving high-dimensional optimal control problems by combining variational auto-encoders with locally-optimal controllers. However, the E2C model suffers from two major drawbacks: 1) its objective function does not correspond to the likelihood of the data sequence and 2) the variational encoder used for embedding typically has large variational approximation error, especially when there is noise in the system dynamics. In this paper, we present a new model for learning robust locally-linear controllable embedding (RCE). Our model directly estimates the predictive conditional density of the future observation given the current one, while introducing the bottleneck between the current and future observations. Although the bottleneck provides a natural embedding candidate for control, our RCE model introduces additional specific structures in the generative graphical model so that the model dynamics can be robustly linearized. We also propose a principled variational approximation of the embedding posterior that takes the future observation into account, and thus, makes the variational approximation more robust against the noise. Experimental results show that RCE outperforms the E2C model, and does so significantly when the underlying dynamics is noisy.Comment: 13 page

    Learning Plannable Representations with Causal InfoGAN

    Full text link
    In recent years, deep generative models have been shown to 'imagine' convincing high-dimensional observations such as images, audio, and even video, learning directly from raw data. In this work, we ask how to imagine goal-directed visual plans -- a plausible sequence of observations that transition a dynamical system from its current configuration to a desired goal state, which can later be used as a reference trajectory for control. We focus on systems with high-dimensional observations, such as images, and propose an approach that naturally combines representation learning and planning. Our framework learns a generative model of sequential observations, where the generative process is induced by a transition in a low-dimensional planning model, and an additional noise. By maximizing the mutual information between the generated observations and the transition in the planning model, we obtain a low-dimensional representation that best explains the causal nature of the data. We structure the planning model to be compatible with efficient planning algorithms, and we propose several such models based on either discrete or continuous states. Finally, to generate a visual plan, we project the current and goal observations onto their respective states in the planning model, plan a trajectory, and then use the generative model to transform the trajectory to a sequence of observations. We demonstrate our method on imagining plausible visual plans of rope manipulation.Comment: ICML / IJCAI / AAMAS 2018 Workshop on Planning and Learning (PAL-18

    Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems

    Full text link
    We present a representation learning algorithm that learns a low-dimensional latent dynamical system from high-dimensional \textit{sequential} raw data, e.g., video. The framework builds upon recent advances in amortized inference methods that use both an inference network and a refinement procedure to output samples from a variational distribution given an observation sequence, and takes advantage of the duality between control and inference to approximately solve the intractable inference problem using the path integral control approach. The learned dynamical model can be used to predict and plan the future states; we also present the efficient planning method that exploits the learned low-dimensional latent dynamics. Numerical experiments show that the proposed path-integral control based variational inference method leads to tighter lower bounds in statistical model learning of sequential data. The supplementary video: https://youtu.be/xCp35crUoLQComment: Neural Information Processing Systems (NeurIPS) 201

    VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for Model-based Control

    Full text link
    Recent breakthroughs in Go play and strategic games have witnessed the great potential of reinforcement learning in intelligently scheduling in uncertain environment, but some bottlenecks are also encountered when we generalize this paradigm to universal complex tasks. Among them, the low efficiency of data utilization in model-free reinforcement algorithms is of great concern. In contrast, the model-based reinforcement learning algorithms can reveal underlying dynamics in learning environments and seldom suffer the data utilization problem. To address the problem, a model-based reinforcement learning algorithm with attention mechanism embedded is proposed as an extension of World Models in this paper. We learn the environment model through Mixture Density Network Recurrent Network(MDN-RNN) for agents to interact, with combinations of variational auto-encoder(VAE) and attention incorporated in state value estimates during the process of learning policy. In this way, agent can learn optimal policies through less interactions with actual environment, and final experiments demonstrate the effectiveness of our model in control problem

    Entity Abstraction in Visual Model-Based Reinforcement Learning

    Full text link
    This paper tests the hypothesis that modeling a scene in terms of entities and their local interactions, as opposed to modeling the scene globally, provides a significant benefit in generalizing to physical tasks in a combinatorial space the learner has not encountered before. We present object-centric perception, prediction, and planning (OP3), which to the best of our knowledge is the first fully probabilistic entity-centric dynamic latent variable framework for model-based reinforcement learning that acquires entity representations from raw visual observations without supervision and uses them to predict and plan. OP3 enforces entity-abstraction -- symmetric processing of each entity representation with the same locally-scoped function -- which enables it to scale to model different numbers and configurations of objects from those in training. Our approach to solving the key technical challenge of grounding these entity representations to actual objects in the environment is to frame this variable binding problem as an inference problem, and we develop an interactive inference algorithm that uses temporal continuity and interactive feedback to bind information about object properties to the entity variables. On block-stacking tasks, OP3 generalizes to novel block configurations and more objects than observed during training, outperforming an oracle model that assumes access to object supervision and achieving two to three times better accuracy than a state-of-the-art video prediction model that does not exhibit entity abstraction.Comment: Accepted at CoRL 201

    Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning

    Full text link
    Temporal observations such as videos contain essential information about the dynamics of the underlying scene, but they are often interleaved with inessential, predictable details. One way of dealing with this problem is by focusing on the most informative moments in a sequence. We propose a model that learns to discover these important events and the times when they occur and uses them to represent the full sequence. We do so using a hierarchical Keyframe-Inpainter (KeyIn) model that first generates a video's keyframes and then inpaints the rest by generating the frames at the intervening times. We propose a fully differentiable formulation to efficiently learn this procedure. We show that KeyIn finds informative keyframes in several datasets with different dynamics and visual properties. KeyIn outperforms other recent hierarchical predictive models for planning. For more details, please see the project website at \url{https://sites.google.com/view/keyin}.Comment: Conference on Learning for Dynamics and Control, 2020. Website: https://sites.google.com/view/keyin/hom
    corecore