7,322 research outputs found

    Planning Against Fictitious Players in Repeated Normal Form Games

    No full text
    Planning how to interact against bounded memory and unbounded memory learning opponents needs different treatment. Thus far, however, work in this area has shown how to design plans against bounded memory learning opponents, but no work has dealt with the unbounded memory case. This paper tackles this gap. In particular, we frame this as a planning problem using the framework of repeated matrix games, where the planner's objective is to compute the best exploiting sequence of actions against a learning opponent. The particular class of opponent we study uses a fictitious play process to update her beliefs, but the analysis generalizes to many forms of Bayesian learning agents. Our analysis is inspired by Banerjee and Peng's AIM framework, which works for planning and learning against bounded memory opponents (e.g an adaptive player). Building on this, we show how an unbounded memory opponent (specifically a fictitious player) can also be modelled as a finite MDP and present a new efficient algorithm that can find a way to exploit the opponent by computing in polynomial time a sequence of play that can obtain a higher average reward than those obtained by playing a game theoretic (Nash or correlated) equilibrium

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac

    Stated versus inferred beliefs: A methodological inquiry and experimental test

    Get PDF
    If asking subjects their beliefs during repeated game play changes the way those subjects play, using those stated beliefs to evaluate and compare theories of strategic behavior is problematic. We experimentally verify that belief elicitation can alter paths of play in a repeated asymmetric matching pennies game. In this setting, belief elicitation improves the goodness of fit of structural models of belief learning, and the prior beliefs implied by such structural models are both stronger and more realistic when beliefs are elicited than when they are not. These effects are, however, confined to the player type who sees a strong asymmetry between payoff possibilities for her two strategies in the game. We also find that “inferred beliefs” (beliefs estimated from past observed actions of opponents) can be better predictors of observed actions than the “stated beliefs” resulting from belief elicitation.beliefs; stated beliefs; belief elicitation; inferred beliefs; estimated beliefs; belief updating; repeated games; experimental methods

    Evolutionary Tournament-Based Comparison of Learning and Non-Learning Algorithms for Iterated Games

    Get PDF
    Evolutionary tournaments have been used effectively as a tool for comparing game-playing algorithms. For instance, in the late 1970's, Axelrod organized tournaments to compare algorithms for playing the iterated prisoner's dilemma (PD) game. These tournaments capture the dynamics in a population of agents that periodically adopt relatively successful algorithms in the environment. While these tournaments have provided us with a better understanding of the relative merits of algorithms for iterated PD, our understanding is less clear about algorithms for playing iterated versions of arbitrary single-stage games in an environment of heterogeneous agents. While the Nash equilibrium solution concept has been used to recommend using Nash equilibrium strategies for rational players playing general-sum games, learning algorithms like fictitious play may be preferred for playing against sub-rational players. In this paper, we study the relative performance of learning and non-learning algorithms in an evolutionary tournament where agents periodically adopt relatively successful algorithms in the population. The tournament is played over a testbed composed of all possible structurally distinct 2×2 conflicted games with ordinal payoffs: a baseline, neutral testbed for comparing algorithms. Before analyzing results from the evolutionary tournament, we discuss the testbed, our choice of representative learning and non-learning algorithms and relative rankings of these algorithms in a round-robin competition. The results from the tournament highlight the advantage of learning algorithms over players using static equilibrium strategies for repeated plays of arbitrary single-stage games. The results are likely to be of more benefit compared to work on static analysis of equilibrium strategies for choosing decision procedures for open, adapting agent society consisting of a variety of competitors.Repeated Games, Evolution, Simulation
    • 

    corecore