17,465 research outputs found

    Safe motion planning under uncertainty for mobile manipulators in unknown environments

    Get PDF
    For a mobile manipulator to operate and perform useful tasks in human-centered environments, it is important to work toward the realization of robust motion planners that incorporate uncertainty inherent in robot\u27s control and sensing and provide safe motion plans for reliable robot operation. Designing such planners pose a significant challenge because of computational complexity associated with mobile manipulator planning and planning under uncertainty. Current planning approaches for mobile manipulation are often conservative in nature and the uncertainty is largely ignored. In this thesis, we propose sampling-based efficient and robust mobile manipulator planners that use smart strategies to deal with computational complexity and incorporate uncertainty to generate safer plans. The first part of the research addresses the design of an efficient planner for deterministic case, where robot state is fully known, and then subsequent extension to incorporate base pose uncertainty. In the first part, we propose a Hierarchical and Adaptive Mobile Manipulator Planner (HAMP) that plans both for the base and the arm in a judicious manner - allowing the manipulator to change its configuration autonomously when needed if the current arm configuration is in collision with the environment as the mobile manipulator moves along the planned path. We show that HAMP is probabilistically complete. We then propose an extension of HAMP (HAMP-U) to account for localization uncertainty associated with the mobile base position. The advantages of our planners are illustrated and discussed. The second part of the research deals with the computational complexity involved in planning under uncertainty. For that, we propose localization aware sampling and connection strategies that help to reduce the planning time significantly with little compromise on the quality of path. In the third part, we learnt from the shortcomings of HAMP-U and took advantage of our smart strategies developed to combat the computational complexity. We propose an efficient and robust mobile manipulator planner (HAMP-BAU) that plans judiciously and considers the base pose uncertainty and the effects of this uncertainty on manipulator motions. It uses our localization aware sampling and connection strategies to consider only those nodes and edges which contribute toward better localization. This helps to find the same quality of path in shorter time. We also extend HAMP-BAU to incorporate task space constraints (HAMP-BAU-TC). Finally, in the last part of the work, we incorporate our planners (HAMP-BAU and HAMP-BAU-TC) within an integrated and fully autonomous system for mobile pick-and-place tasks in unknown static environments. We demonstrate our system both in simulation and real experiments on SFU mobile manipulator

    Keep Rollin' - Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots

    Full text link
    We show dynamic locomotion strategies for wheeled quadrupedal robots, which combine the advantages of both walking and driving. The developed optimization framework tightly integrates the additional degrees of freedom introduced by the wheels. Our approach relies on a zero-moment point based motion optimization which continuously updates reference trajectories. The reference motions are tracked by a hierarchical whole-body controller which computes optimal generalized accelerations and contact forces by solving a sequence of prioritized tasks including the nonholonomic rolling constraints. Our approach has been tested on ANYmal, a quadrupedal robot that is fully torque-controlled including the non-steerable wheels attached to its legs. We conducted experiments on flat and inclined terrains as well as over steps, whereby we show that integrating the wheels into the motion control and planning framework results in intuitive motion trajectories, which enable more robust and dynamic locomotion compared to other wheeled-legged robots. Moreover, with a speed of 4 m/s and a reduction of the cost of transport by 83 % we prove the superiority of wheeled-legged robots compared to their legged counterparts.Comment: IEEE Robotics and Automation Letter

    A Bayesian framework for optimal motion planning with uncertainty

    Get PDF
    Modeling robot motion planning with uncertainty in a Bayesian framework leads to a computationally intractable stochastic control problem. We seek hypotheses that can justify a separate implementation of control, localization and planning. In the end, we reduce the stochastic control problem to path- planning in the extended space of poses x covariances; the transitions between states are modeled through the use of the Fisher information matrix. In this framework, we consider two problems: minimizing the execution time, and minimizing the final covariance, with an upper bound on the execution time. Two correct and complete algorithms are presented. The first is the direct extension of classical graph-search algorithms in the extended space. The second one is a back-projection algorithm: uncertainty constraints are propagated backward from the goal towards the start state
    corecore