2,357 research outputs found

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≄1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p≠2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio

    Spanning trees of 3-uniform hypergraphs

    Full text link
    Masbaum and Vaintrob's "Pfaffian matrix tree theorem" implies that counting spanning trees of a 3-uniform hypergraph (abbreviated to 3-graph) can be done in polynomial time for a class of "3-Pfaffian" 3-graphs, comparable to and related to the class of Pfaffian graphs. We prove a complexity result for recognizing a 3-Pfaffian 3-graph and describe two large classes of 3-Pfaffian 3-graphs -- one of these is given by a forbidden subgraph characterization analogous to Little's for bipartite Pfaffian graphs, and the other consists of a class of partial Steiner triple systems for which the property of being 3-Pfaffian can be reduced to the property of an associated graph being Pfaffian. We exhibit an infinite set of partial Steiner triple systems that are not 3-Pfaffian, none of which can be reduced to any other by deletion or contraction of triples. We also find some necessary or sufficient conditions for the existence of a spanning tree of a 3-graph (much more succinct than can be obtained by the currently fastest polynomial-time algorithm of Gabow and Stallmann for finding a spanning tree) and a superexponential lower bound on the number of spanning trees of a Steiner triple system.Comment: 34 pages, 9 figure

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where h≀nh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding ÎŁ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018
    • 

    corecore