1,690 research outputs found

    Mixed powers of generating functions

    Full text link
    Given an integer m>=1, let || || be a norm in R^{m+1} and let S denote the set of points with nonnegative coordinates in the unit sphere with respect to this norm. Consider for each 1<= j<= m a function f_j(z) that is analytic in an open neighborhood of the point z=0 in the complex plane and with possibly negative Taylor coefficients. Given a vector n=(n_0,...,n_m) with nonnegative integer coefficients, we develop a method to systematically associate a parameter-varying integral to study the asymptotic behavior of the coefficient of z^{n_0} of the Taylor series of (f_1(z))^{n_1}...(f_m(z))^{n_m}, as ||n|| tends to infinity. The associated parameter-varying integral has a phase term with well specified properties that make the asymptotic analysis of the integral amenable to saddle-point methods: for many directions d in S, these methods ensure uniform asymptotic expansions for the Taylor coefficient of z^{n_0} of (f_1(z))^{n_1}...(f_m(z))^{n_m}, provided that n/||n|| stays sufficiently close to d as ||n|| blows up to infinity. Our method finds applications in studying the asymptotic behavior of the coefficients of a certain multivariable generating functions as well as in problems related to the Lagrange inversion formula for instance in the context random planar maps.Comment: 14 page

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g1)/21γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability

    Fractal solutions of linear and nonlinear dispersive partial differential equations

    Full text link
    In this paper we study fractal solutions of linear and nonlinear dispersive PDE on the torus. In the first part we answer some open questions on the fractal solutions of linear Schr\"odinger equation and equations with higher order dispersion. We also discuss applications to their nonlinear counterparts like the cubic Schr\"odinger equation (NLS) and the Korteweg-de Vries equation (KdV). In the second part, we study fractal solutions of the vortex filament equation and the associated Schr\"odinger map equation (SM). In particular, we construct global strong solutions of the SM in HsH^s for s>32s>\frac32 for which the evolution of the curvature is given by a periodic nonlinear Schr\"odinger evolution. We also construct unique weak solutions in the energy level. Our analysis follows the frame construction of Chang {\em et al.} \cite{csu} and Nahmod {\em et al.} \cite{nsvz}.Comment: 28 page

    On the probability of planarity of a random graph near the critical point

    Get PDF
    Consider the uniform random graph G(n,M)G(n,M) with nn vertices and MM edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} exists and is a constant strictly between 0 and 1. \L uczak, Pittel and Wierman (1994) proved this conjecture and Janson, \L uczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact probability of a random graph being planar near the critical point M=n/2M=n/2. For each λ\lambda, we find an exact analytic expression for p(λ)=limnPrG(n,n2(1+λn1/3))isplanar. p(\lambda) = \lim_{n \to \infty} \Pr{G(n,\textstyle{n\over 2}(1+\lambda n^{-1/3})) is planar}. In particular, we obtain p(0)0.99780p(0) \approx 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n,n2)G(n,\textstyle{n\over 2}) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.Comment: 10 pages, 1 figur
    corecore