1,321,477 research outputs found
Parameterized Complexity Results for Plan Reuse
Planning is a notoriously difficult computational problem of high worst-case
complexity. Researchers have been investing significant efforts to develop
heuristics or restrictions to make planning practically feasible. Case-based
planning is a heuristic approach where one tries to reuse previous experience
when solving similar problems in order to avoid some of the planning effort.
Plan reuse may offer an interesting alternative to plan generation in some
settings.
We provide theoretical results that identify situations in which plan reuse
is provably tractable. We perform our analysis in the framework of
parameterized complexity, which supports a rigorous worst-case complexity
analysis that takes structural properties of the input into account in terms of
parameters. A central notion of parameterized complexity is fixed-parameter
tractability which extends the classical notion of polynomial-time tractability
by utilizing the effect of structural properties of the problem input.
We draw a detailed map of the parameterized complexity landscape of several
variants of problems that arise in the context of case-based planning. In
particular, we consider the problem of reusing an existing plan, imposing
various restrictions in terms of parameters, such as the number of steps that
can be added to the existing plan to turn it into a solution of the planning
instance at hand.Comment: Proceedings of AAAI 2013, pp. 224-231, AAAI Press, 201
On the Complexity of Case-Based Planning
We analyze the computational complexity of problems related to case-based
planning: planning when a plan for a similar instance is known, and planning
from a library of plans. We prove that planning from a single case has the same
complexity than generative planning (i.e., planning "from scratch"); using an
extended definition of cases, complexity is reduced if the domain stored in the
case is similar to the one to search plans for. Planning from a library of
cases is shown to have the same complexity. In both cases, the complexity of
planning remains, in the worst case, PSPACE-complete
Complexity models in design
Complexity is a widely used term; it has many formal and informal meanings. Several formal models of complexity can be applied to designs and design processes. The aim of the paper is to examine the relation between complexity and design. This argument runs in two ways. First designing provides insights into how to respond to complex systems – how to manage, plan and control them. Second, the overwhelming complexity of many design projects lead us to examine how better understanding of complexity science can lead to improved designs and processes. This is the focus of this paper. We start with an outline of some observations on where complexity arises in design, followed by a brief discussion of the development of scientific and formal conceptions of complexity. We indicate how these can help in understanding design processes and improving designs
Structure and Complexity in Planning with Unary Operators
Unary operator domains -- i.e., domains in which operators have a single
effect -- arise naturally in many control problems. In its most general form,
the problem of STRIPS planning in unary operator domains is known to be as hard
as the general STRIPS planning problem -- both are PSPACE-complete. However,
unary operator domains induce a natural structure, called the domain's causal
graph. This graph relates between the preconditions and effect of each domain
operator. Causal graphs were exploited by Williams and Nayak in order to
analyze plan generation for one of the controllers in NASA's Deep-Space One
spacecraft. There, they utilized the fact that when this graph is acyclic, a
serialization ordering over any subgoal can be obtained quickly. In this paper
we conduct a comprehensive study of the relationship between the structure of a
domain's causal graph and the complexity of planning in this domain. On the
positive side, we show that a non-trivial polynomial time plan generation
algorithm exists for domains whose causal graph induces a polytree with a
constant bound on its node indegree. On the negative side, we show that even
plan existence is hard when the graph is a directed-path singly connected DAG.
More generally, we show that the number of paths in the causal graph is closely
related to the complexity of planning in the associated domain. Finally we
relate our results to the question of complexity of planning with serializable
subgoals
The Complexity of Planning Problems With Simple Causal Graphs
We present three new complexity results for classes of planning problems with
simple causal graphs. First, we describe a polynomial-time algorithm that uses
macros to generate plans for the class 3S of planning problems with binary
state variables and acyclic causal graphs. This implies that plan generation
may be tractable even when a planning problem has an exponentially long minimal
solution. We also prove that the problem of plan existence for planning
problems with multi-valued variables and chain causal graphs is NP-hard.
Finally, we show that plan existence for planning problems with binary state
variables and polytree causal graphs is NP-complete
- …
