1,321,477 research outputs found

    Parameterized Complexity Results for Plan Reuse

    Full text link
    Planning is a notoriously difficult computational problem of high worst-case complexity. Researchers have been investing significant efforts to develop heuristics or restrictions to make planning practically feasible. Case-based planning is a heuristic approach where one tries to reuse previous experience when solving similar problems in order to avoid some of the planning effort. Plan reuse may offer an interesting alternative to plan generation in some settings. We provide theoretical results that identify situations in which plan reuse is provably tractable. We perform our analysis in the framework of parameterized complexity, which supports a rigorous worst-case complexity analysis that takes structural properties of the input into account in terms of parameters. A central notion of parameterized complexity is fixed-parameter tractability which extends the classical notion of polynomial-time tractability by utilizing the effect of structural properties of the problem input. We draw a detailed map of the parameterized complexity landscape of several variants of problems that arise in the context of case-based planning. In particular, we consider the problem of reusing an existing plan, imposing various restrictions in terms of parameters, such as the number of steps that can be added to the existing plan to turn it into a solution of the planning instance at hand.Comment: Proceedings of AAAI 2013, pp. 224-231, AAAI Press, 201

    On the Complexity of Case-Based Planning

    Full text link
    We analyze the computational complexity of problems related to case-based planning: planning when a plan for a similar instance is known, and planning from a library of plans. We prove that planning from a single case has the same complexity than generative planning (i.e., planning "from scratch"); using an extended definition of cases, complexity is reduced if the domain stored in the case is similar to the one to search plans for. Planning from a library of cases is shown to have the same complexity. In both cases, the complexity of planning remains, in the worst case, PSPACE-complete

    Complexity models in design

    Get PDF
    Complexity is a widely used term; it has many formal and informal meanings. Several formal models of complexity can be applied to designs and design processes. The aim of the paper is to examine the relation between complexity and design. This argument runs in two ways. First designing provides insights into how to respond to complex systems – how to manage, plan and control them. Second, the overwhelming complexity of many design projects lead us to examine how better understanding of complexity science can lead to improved designs and processes. This is the focus of this paper. We start with an outline of some observations on where complexity arises in design, followed by a brief discussion of the development of scientific and formal conceptions of complexity. We indicate how these can help in understanding design processes and improving designs

    Structure and Complexity in Planning with Unary Operators

    Full text link
    Unary operator domains -- i.e., domains in which operators have a single effect -- arise naturally in many control problems. In its most general form, the problem of STRIPS planning in unary operator domains is known to be as hard as the general STRIPS planning problem -- both are PSPACE-complete. However, unary operator domains induce a natural structure, called the domain's causal graph. This graph relates between the preconditions and effect of each domain operator. Causal graphs were exploited by Williams and Nayak in order to analyze plan generation for one of the controllers in NASA's Deep-Space One spacecraft. There, they utilized the fact that when this graph is acyclic, a serialization ordering over any subgoal can be obtained quickly. In this paper we conduct a comprehensive study of the relationship between the structure of a domain's causal graph and the complexity of planning in this domain. On the positive side, we show that a non-trivial polynomial time plan generation algorithm exists for domains whose causal graph induces a polytree with a constant bound on its node indegree. On the negative side, we show that even plan existence is hard when the graph is a directed-path singly connected DAG. More generally, we show that the number of paths in the causal graph is closely related to the complexity of planning in the associated domain. Finally we relate our results to the question of complexity of planning with serializable subgoals

    The Complexity of Planning Problems With Simple Causal Graphs

    Full text link
    We present three new complexity results for classes of planning problems with simple causal graphs. First, we describe a polynomial-time algorithm that uses macros to generate plans for the class 3S of planning problems with binary state variables and acyclic causal graphs. This implies that plan generation may be tractable even when a planning problem has an exponentially long minimal solution. We also prove that the problem of plan existence for planning problems with multi-valued variables and chain causal graphs is NP-hard. Finally, we show that plan existence for planning problems with binary state variables and polytree causal graphs is NP-complete
    corecore