4,467 research outputs found

    Strategic Network Interdiction

    Get PDF
    We develop a strategic model of network interdiction in a non-cooperative game of flow. An adversary, endowed with a bounded quantity of bads, chooses a flow specifying a plan for carrying bads through a network from a base to a target. Simultaneously, an agency chooses a blockage specifying a plan for blocking the transport of bads through arcs in the network. The bads carried to the target cause a target loss while the blocked arcs cause a network loss. The adversary earns and the agency loses from both target loss and network loss. The adversary incurs the expense of carrying bads. In this model we study Nash equilibria and find a power law relation between the probability and the extent of the target loss. Our model contributes to the literature of game theory by introducing non-cooperative behavior into a Kalai-Zemel (cooperative) game of flow. Our research also advances models and results on network interdiction.Network Interdiction, Noncooperative Game of Flow, Nash Equilibrium, Power Law, Kalai-Zemel Game of Flow

    Probability Distributions on Partially Ordered Sets and Network Interdiction Games

    Full text link
    This article poses the following problem: Does there exist a probability distribution over subsets of a finite partially ordered set (poset), such that a set of constraints involving marginal probabilities of the poset's elements and maximal chains is satisfied? We present a combinatorial algorithm to positively resolve this question. The algorithm can be implemented in polynomial time in the special case where maximal chain probabilities are affine functions of their elements. This existence problem is relevant for the equilibrium characterization of a generic strategic interdiction game on a capacitated flow network. The game involves a routing entity that sends its flow through the network while facing path transportation costs, and an interdictor who simultaneously interdicts one or more edges while facing edge interdiction costs. Using our existence result on posets and strict complementary slackness in linear programming, we show that the Nash equilibria of this game can be fully described using primal and dual solutions of a minimum-cost circulation problem. Our analysis provides a new characterization of the critical components in the interdiction game. It also leads to a polynomial-time approach for equilibrium computation

    The War on Illegal Drug Production and Trafficking: An Economic Evaluation of Plan Colombia.

    Get PDF
    This paper provides a thorough economic evaluation of the anti-drug policies implemented in Colombia between 2000 and 2006 under the so-called Plan Colombia. The paper develops a game theory model of the war against illegal drugs in producer countries. We explicitly model illegal drug markets, which allows us to account for the feedback effects between policies and market outcomes that are potentially important when evaluating large scale policy interventions such as Plan Colombia. We use available data for the war on cocaine production and trafficking as well as outcomes from the cocaine markets to calibrate the parameters of the model. Using the results from the calibration we estimate important measures of the costs, effectiveness, and efficiency of the war on drugs in Colombia. Finally we carry out simulations in order to assess the impact of increases in the U.S. budget allocated to Plan Colombia, and find that a three-fold increase in the U.S. budget allocated to the war on drugs in Colombia would decrease the amount of cocaine that succesfully reaches consumer countries by about 17%.Hard drugs, conflict, war on drugs, Plan Colombia

    Amoral Numbers and Narcotics Sentencing

    Get PDF

    Stochastic network interdiction games

    Full text link
    Thesis (Ph.D.)--Boston UniversityNetwork interdiction problems consist of games between an attacker and an intelligent network, where the attacker seeks to degrade network operations while the network adapts its operations to counteract the effects of the attacker. This problem has received significant attention in recent years due to its relevance to military problems and network security. When the attacker's actions achieve uncertain effects, the resulting problems become stochastic network interdiction problems. In this thesis, we develop new algorithms for the solutions of different classes of stochastic network interdiction problems. We first focus on static network interdiction games where the attacker attacks the network once, which will change the network with certain probability. Then the network will maximize the flow from a given source to its destination. The attacker is seeking a strategy which minimizes the expected maximum flow after the attack. For this problem, we develop a new solution algorithm, based on parsimonious integration of branch and bound techniques with increasingly accurate lower bounds. Our method obtains solutions significantly faster than previous approaches in the literature. In the second part, we study a multi-stage interdiction problem where the attacker can attack the network multiple times, and observe the outcomes of its past attacks before selecting a current attack. For this dynamic interdiction game, we use a model-predictive approach based on a lower bound approximation. We develop a new set of performance bounds, which are integrated into a modified branch and bound procedure that extends the single stage approach to multiple stages. We show that our new algorithm is faster than other available methods with simulated experiments. In the last part, we study the nested information game between an intelligent network and an attacker, where the attacker has partial information about the network state, which refers to the availability of arcs. The attacker does not know the exact state, but has a probability distribution over the possible network states. The attacker makes several attempts to attack the network and observes the flows on the network. These observations will update the attacker's knowledge of the network and will be used in selecting the next attack actions. The defender can either send flow on that arc if it survived, or refrain from using it in order to deceive the attacker. For these problems, we develop a faster algorithm, which decomposes this game into a sequence of subgames and solves them to get the equilibrium strategy for the original game. Numerical results show that our method can handle large problems which other available methods fail to solve
    • …
    corecore