647,042 research outputs found

    Shapes From Pixels

    Get PDF
    Continuous-domain visual signals are usually captured as discrete (digital) images. This operation is not invertible in general, in the sense that the continuous-domain signal cannot be exactly reconstructed based on the discrete image, unless it satisfies certain constraints (\emph{e.g.}, bandlimitedness). In this paper, we study the problem of recovering shape images with smooth boundaries from a set of samples. Thus, the reconstructed image is constrained to regenerate the same samples (consistency), as well as forming a shape (bilevel) image. We initially formulate the reconstruction technique by minimizing the shape perimeter over the set of consistent binary shapes. Next, we relax the non-convex shape constraint to transform the problem into minimizing the total variation over consistent non-negative-valued images. We also introduce a requirement (called reducibility) that guarantees equivalence between the two problems. We illustrate that the reducibility property effectively sets a requirement on the minimum sampling density. One can draw analogy between the reducibility property and the so-called restricted isometry property (RIP) in compressed sensing which establishes the equivalence of the 0\ell_0 minimization with the relaxed 1\ell_1 minimization. We also evaluate the performance of the relaxed alternative in various numerical experiments.Comment: 13 pages, 14 figure

    ViZDoom Competitions: Playing Doom from Pixels

    Full text link
    This paper presents the first two editions of Visual Doom AI Competition, held in 2016 and 2017. The challenge was to create bots that compete in a multi-player deathmatch in a first-person shooter (FPS) game, Doom. The bots had to make their decisions based solely on visual information, i.e., a raw screen buffer. To play well, the bots needed to understand their surroundings, navigate, explore, and handle the opponents at the same time. These aspects, together with the competitive multi-agent aspect of the game, make the competition a unique platform for evaluating the state of the art reinforcement learning algorithms. The paper discusses the rules, solutions, results, and statistics that give insight into the agents' behaviors. Best-performing agents are described in more detail. The results of the competition lead to the conclusion that, although reinforcement learning can produce capable Doom bots, they still are not yet able to successfully compete against humans in this game. The paper also revisits the ViZDoom environment, which is a flexible, easy to use, and efficient 3D platform for research for vision-based reinforcement learning, based on a well-recognized first-person perspective game Doom

    Diffractive optics approach towards subwavelength pixels

    Full text link
    Pixel size in cameras and other refractive imaging devices is typically limited by the free-space diffraction. However, a vast majority of semiconductor-based detectors are based on materials with substantially high refractive index. We demonstrate that diffractive optics can be used to take advantage of this high refractive index to reduce effective pixel size of the sensors below free-space diffraction limit. At the same time, diffractive systems encode both amplitude and phase information about the incoming beam into multiple pixels, offering the platform for noise-tolerant imaging with dynamical refocusing. We explore the opportunities opened by high index diffractive optics to reduce sensor size and increase signal-to-noise ratio of imaging structures.Comment: submitted to SPIE-DCS 201

    Invisible Pixels Are Dead, Long Live Invisible Pixels!

    Full text link
    Privacy has deteriorated in the world wide web ever since the 1990s. The tracking of browsing habits by different third-parties has been at the center of this deterioration. Web cookies and so-called web beacons have been the classical ways to implement third-party tracking. Due to the introduction of more sophisticated technical tracking solutions and other fundamental transformations, the use of classical image-based web beacons might be expected to have lost their appeal. According to a sample of over thirty thousand images collected from popular websites, this paper shows that such an assumption is a fallacy: classical 1 x 1 images are still commonly used for third-party tracking in the contemporary world wide web. While it seems that ad-blockers are unable to fully block these classical image-based tracking beacons, the paper further demonstrates that even limited information can be used to accurately classify the third-party 1 x 1 images from other images. An average classification accuracy of 0.956 is reached in the empirical experiment. With these results the paper contributes to the ongoing attempts to better understand the lack of privacy in the world wide web, and the means by which the situation might be eventually improved.Comment: Forthcoming in the 17th Workshop on Privacy in the Electronic Society (WPES 2018), Toronto, AC

    Automated Detection of Regions of Interest for Brain Perfusion MR Images

    Get PDF
    Images with abnormal brain anatomy produce problems for automatic segmentation techniques, and as a result poor ROI detection affects both quantitative measurements and visual assessment of perfusion data. This paper presents a new approach for fully automated and relatively accurate ROI detection from dynamic susceptibility contrast perfusion magnetic resonance and can therefore be applied excellently in the perfusion analysis. In the proposed approach the segmentation output is a binary mask of perfusion ROI that has zero values for air pixels, pixels that represent non-brain tissues, and cerebrospinal fluid pixels. The process of binary mask producing starts with extracting low intensity pixels by thresholding. Optimal low-threshold value is solved by obtaining intensity pixels information from the approximate anatomical brain location. Holes filling algorithm and binary region growing algorithm are used to remove falsely detected regions and produce region of only brain tissues. Further, CSF pixels extraction is provided by thresholding of high intensity pixels from region of only brain tissues. Each time-point image of the perfusion sequence is used for adjustment of CSF pixels location. The segmentation results were compared with the manual segmentation performed by experienced radiologists, considered as the reference standard for evaluation of proposed approach. On average of 120 images the segmentation results have a good agreement with the reference standard. All detected perfusion ROIs were deemed by two experienced radiologists as satisfactory enough for clinical use. The results show that proposed approach is suitable to be used for perfusion ROI detection from DSC head scans. Segmentation tool based on the proposed approach can be implemented as a part of any automatic brain image processing system for clinical use
    corecore