1,455 research outputs found

    Pixel-Level Self-Paced Learning for Super-Resolution

    Full text link
    Recently, lots of deep networks are proposed to improve the quality of predicted super-resolution (SR) images, due to its widespread use in several image-based fields. However, with these networks being constructed deeper and deeper, they also cost much longer time for training, which may guide the learners to local optimization. To tackle this problem, this paper designs a training strategy named Pixel-level Self-Paced Learning (PSPL) to accelerate the convergence velocity of SISR models. PSPL imitating self-paced learning gives each pixel in the predicted SR image and its corresponding pixel in ground truth an attention weight, to guide the model to a better region in parameter space. Extensive experiments proved that PSPL could speed up the training of SISR models, and prompt several existing models to obtain new better results. Furthermore, the source code is available at https://github.com/Elin24/PSPL.Comment: 5 pages, 5 figures. Accepted by ICASSP 2020, Source code: https://github.com/Elin24/PSP

    Adaptive Semantic Segmentation with a Strategic Curriculum of Proxy Labels

    Full text link
    Training deep networks for semantic segmentation requires annotation of large amounts of data, which can be time-consuming and expensive. Unfortunately, these trained networks still generalize poorly when tested in domains not consistent with the training data. In this paper, we show that by carefully presenting a mixture of labeled source domain and proxy-labeled target domain data to a network, we can achieve state-of-the-art unsupervised domain adaptation results. With our design, the network progressively learns features specific to the target domain using annotation from only the source domain. We generate proxy labels for the target domain using the network's own predictions. Our architecture then allows selective mining of easy samples from this set of proxy labels, and hard samples from the annotated source domain. We conduct a series of experiments with the GTA5, Cityscapes and BDD100k datasets on synthetic-to-real domain adaptation and geographic domain adaptation, showing the advantages of our method over baselines and existing approaches

    Bi-Skip: A Motion Deblurring Network Using Self-paced Learning

    Full text link
    A fast and effective motion deblurring method has great application values in real life. This work presents an innovative approach in which a self-paced learning is combined with GAN to deblur image. First, We explain that a proper generator can be used as deep priors and point out that the solution for pixel-based loss is not same with the one for perception-based loss. By using these ideas as starting points, a Bi-Skip network is proposed to improve the generating ability and a bi-level loss is adopted to solve the problem that common conditions are non-identical. Second, considering that the complex motion blur will perturb the network in the training process, a self-paced mechanism is adopted to enhance the robustness of the network. Through extensive evaluations on both qualitative and quantitative criteria, it is demonstrated that our approach has a competitive advantage over state-of-the-art methods

    Review of Visual Saliency Detection with Comprehensive Information

    Full text link
    Visual saliency detection model simulates the human visual system to perceive the scene, and has been widely used in many vision tasks. With the acquisition technology development, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. Co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discission are conducted to provide a holistic overview of different saliency detection methods.Comment: 18 pages, 11 figures, 7 tables, Accepted by IEEE Transactions on Circuits and Systems for Video Technology 2018, https://rmcong.github.io

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey

    Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!

    Full text link
    Autoencoders are unsupervised deep learning models used for learning representations. In literature, autoencoders have shown to perform well on a variety of tasks spread across multiple domains, thereby establishing widespread applicability. Typically, an autoencoder is trained to generate a model that minimizes the reconstruction error between the input and the reconstructed output, computed in terms of the Euclidean distance. While this can be useful for applications related to unsupervised reconstruction, it may not be optimal for classification. In this paper, we propose a novel Supervised COSMOS Autoencoder which utilizes a multi-objective loss function to learn representations that simultaneously encode the (i) "similarity" between the input and reconstructed vectors in terms of their direction, (ii) "distribution" of pixel values of the reconstruction with respect to the input sample, while also incorporating (iii) "discriminability" in the feature learning pipeline. The proposed autoencoder model incorporates a Cosine similarity and Mahalanobis distance based loss function, along with supervision via Mutual Information based loss. Detailed analysis of each component of the proposed model motivates its applicability for feature learning in different classification tasks. The efficacy of Supervised COSMOS autoencoder is demonstrated via extensive experimental evaluations on different image datasets. The proposed model outperforms existing algorithms on MNIST, CIFAR-10, and SVHN databases. It also yields state-of-the-art results on CelebA, LFWA, Adience, and IJB-A databases for attribute prediction and face recognition, respectively

    Deep Likelihood Network for Image Restoration with Multiple Degradation Levels

    Full text link
    Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings. In this paper, we propose deep likelihood network (DL-Net), aiming at generalizing off-the-shelf image restoration networks to succeed over a spectrum of degradation levels. We slightly modify an off-the-shelf network by appending a simple recursive module, which is derived from a fidelity term, for disentangling the computation for multiple degradation levels. Extensive experimental results on image inpainting, interpolation, and super-resolution show the effectiveness of our DL-Net.Comment: Accepted by IEEE Transactions on Image Processing; 13 pages, 6 figure

    Soft Proposal Networks for Weakly Supervised Object Localization

    Full text link
    Weakly supervised object localization remains challenging, where only image labels instead of bounding boxes are available during training. Object proposal is an effective component in localization, but often computationally expensive and incapable of joint optimization with some of the remaining modules. In this paper, to the best of our knowledge, we for the first time integrate weakly supervised object proposal into convolutional neural networks (CNNs) in an end-to-end learning manner. We design a network component, Soft Proposal (SP), to be plugged into any standard convolutional architecture to introduce the nearly cost-free object proposal, orders of magnitude faster than state-of-the-art methods. In the SP-augmented CNNs, referred to as Soft Proposal Networks (SPNs), iteratively evolved object proposals are generated based on the deep feature maps then projected back, and further jointly optimized with network parameters, with image-level supervision only. Through the unified learning process, SPNs learn better object-centric filters, discover more discriminative visual evidence, and suppress background interference, significantly boosting both weakly supervised object localization and classification performance. We report the best results on popular benchmarks, including PASCAL VOC, MS COCO, and ImageNet.Comment: ICCV 201

    A Review of Co-saliency Detection Technique: Fundamentals, Applications, and Challenges

    Full text link
    Co-saliency detection is a newly emerging and rapidly growing research area in computer vision community. As a novel branch of visual saliency, co-saliency detection refers to the discovery of common and salient foregrounds from two or more relevant images, and can be widely used in many computer vision tasks. The existing co-saliency detection algorithms mainly consist of three components: extracting effective features to represent the image regions, exploring the informative cues or factors to characterize co-saliency, and designing effective computational frameworks to formulate co-saliency. Although numerous methods have been developed, the literature is still lacking a deep review and evaluation of co-saliency detection techniques. In this paper, we aim at providing a comprehensive review of the fundamentals, challenges, and applications of co-saliency detection. Specifically, we provide an overview of some related computer vision works, review the history of co-saliency detection, summarize and categorize the major algorithms in this research area, discuss some open issues in this area, present the potential applications of co-saliency detection, and finally point out some unsolved challenges and promising future works. We expect this review to be beneficial to both fresh and senior researchers in this field, and give insights to researchers in other related areas regarding the utility of co-saliency detection algorithms.Comment: 28 pages, 12 figures, 3 table

    Salient Object Detection in the Deep Learning Era: An In-Depth Survey

    Full text link
    As an essential problem in computer vision, salient object detection (SOD) has attracted an increasing amount of research attention over the years. Recent advances in SOD are predominantly led by deep learning-based solutions (named deep SOD). To enable in-depth understanding of deep SOD, in this paper, we provide a comprehensive survey covering various aspects, ranging from algorithm taxonomy to unsolved issues. In particular, we first review deep SOD algorithms from different perspectives, including network architecture, level of supervision, learning paradigm, and object-/instance-level detection. Following that, we summarize and analyze existing SOD datasets and evaluation metrics. Then, we benchmark a large group of representative SOD models, and provide detailed analyses of the comparison results. Moreover, we study the performance of SOD algorithms under different attribute settings, which has not been thoroughly explored previously, by constructing a novel SOD dataset with rich attribute annotations covering various salient object types, challenging factors, and scene categories. We further analyze, for the first time in the field, the robustness of SOD models to random input perturbations and adversarial attacks. We also look into the generalization and difficulty of existing SOD datasets. Finally, we discuss several open issues of SOD and outline future research directions.Comment: Published on IEEE TPAMI. All the saliency prediction maps, our constructed dataset with annotations, and codes for evaluation are publicly available at \url{https://github.com/wenguanwang/SODsurvey
    corecore