87,151 research outputs found
Piezoelectric devices for vibration suppression: Modeling and application to a truss structure
For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented
H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors
We present Heartbeats-2-Bits (H2B), which is a system for securely pairing
wearable devices by generating a shared secret key from the skin vibrations
caused by heartbeat. This work is motivated by potential power saving
opportunity arising from the fact that heartbeat intervals can be detected
energy-efficiently using inexpensive and power-efficient piezo sensors, which
obviates the need to employ complex heartbeat monitors such as
Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that
piezo sensors can measure heartbeat intervals on many different body locations
including chest, wrist, waist, neck and ankle. Unfortunately, we also discover
that the heartbeat interval signal captured by piezo vibration sensors has low
Signal-to-Noise Ratio (SNR) because they are not designed as precision
heartbeat monitors, which becomes the key challenge for H2B. To overcome this
problem, we first apply a quantile function-based quantization method to fully
extract the useful entropy from the noisy piezo measurements. We then propose a
novel Compressive Sensing-based reconciliation method to correct the high bit
mismatch rates between the two independently generated keys caused by low SNR.
We prototype H2B using off-the-shelf piezo sensors and evaluate its performance
on a dataset collected from different body positions of 23 participants. Our
results show that H2B has an overwhelming pairing success rate of 95.6%. We
also analyze and demonstrate H2B's robustness against three types of attacks.
Finally, our power measurements show that H2B is very power-efficient
Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection
Calibration sources are an indispensable tool for all detectors. In acoustic
particle detection the goal of a calibration source is to mimic neutrino
signatures as expected from hadronic cascades. A simple and promising method
for the emulation of neutrino signals are piezo ceramics. We will present
results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure
Closed-Loop Control of a Piezo-Fluidic Amplifier
Fluidic valves based on the Coand\u{a} effect are increasingly being
considered for use in aerodynamic flow control applications. A limiting factor
is their variation in switching time, which often precludes their use. The
purpose of this paper is to demonstrate the closed-loop control of a recently
developed, novel piezo-fluidic valve that reduces response time uncertainty at
the expense of operating bandwidth. Use is made of the fact that a fluidic jet
responds to a piezo tone by deflecting away from its steady state position. A
control signal used to vary this deflection is amplitude modulated onto the
piezo tone. Using only a pressure measurement from one of the device output
channels, an output-based LQG regulator was designed to follow a desired
reference deflection, achieving control of a 90 m/s jet. Finally, the
controller's performance in terms of disturbance rejection and response time
predictability is demonstrated.Comment: 31 pages, 23 figures. Published in AIAA Journal, 4th May 202
Stability of plane Poiseuille-Couette flows of a piezo-viscous fluid
We examine stability of fully developed isothermal unidirectional plane Poiseuille--Couette flows of an incompressible fluid whose viscosity depends linearly on the pressure as previously considered in Hron01 and Suslov08. Stability results for a piezo-viscous fluid are compared with those for a Newtonian fluid with constant viscosity. We show that piezo-viscous effects generally lead to stabilisation of a primary flow when the applied pressure gradient is increased. We also show that the flow becomes less stable as the pressure and therefore the fluid viscosity decrease downstream. These features drastically distinguish flows of a piezo-viscous fluid from those of its constant-viscosity counterpart. At the same time the increase in the boundary velocity results in a flow stabilisation which is similar to that observed in Newtonian fluids with constant viscosity
- …
