5 research outputs found

    Adaptive Nonparametric Image Parsing

    Get PDF
    In this paper, we present an adaptive nonparametric solution to the image parsing task, namely annotating each image pixel with its corresponding category label. For a given test image, first, a locality-aware retrieval set is extracted from the training data based on super-pixel matching similarities, which are augmented with feature extraction for better differentiation of local super-pixels. Then, the category of each super-pixel is initialized by the majority vote of the kk-nearest-neighbor super-pixels in the retrieval set. Instead of fixing kk as in traditional non-parametric approaches, here we propose a novel adaptive nonparametric approach which determines the sample-specific k for each test image. In particular, kk is adaptively set to be the number of the fewest nearest super-pixels which the images in the retrieval set can use to get the best category prediction. Finally, the initial super-pixel labels are further refined by contextual smoothing. Extensive experiments on challenging datasets demonstrate the superiority of the new solution over other state-of-the-art nonparametric solutions.Comment: 11 page

    Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency

    Get PDF
    This paper addresses the problem of semantic part parsing (segmentation) of cars, i.e.assigning every pixel within the car to one of the parts (e.g.body, window, lights, license plates and wheels). We formulate this as a landmark identification problem, where a set of landmarks specifies the boundaries of the parts. A novel mixture of graphical models is proposed, which dynamically couples the landmarks to a hierarchy of segments. When modeling pairwise relation between landmarks, this coupling enables our model to exploit the local image contents in addition to spatial deformation, an aspect that most existing graphical models ignore. In particular, our model enforces appearance consistency between segments within the same part. Parsing the car, including finding the optimal coupling between landmarks and segments in the hierarchy, is performed by dynamic programming. We evaluate our method on a subset of PASCAL VOC 2010 car images and on the car subset of 3D Object Category dataset (CAR3D). We show good results and, in particular, quantify the effectiveness of using the segment appearance consistency in terms of accuracy of part localization and segmentation.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216

    Context Driven Scene Understanding

    Get PDF
    Understanding objects in complex scenes is a fundamental and challenging problem in computer vision. Given an image, we would like to answer the questions of whether there is an object of a particular category in the image, where is it, and if possible, locate it with a bounding box or pixel-wise labels. In this dissertation, we present context driven approaches leveraging relationships between objects in the scene to improve both the accuracy and efficiency of scene understanding. In the first part, we describe an approach to jointly solve the segmentation and recognition problem using a multiple segmentation framework with context. Our approach formulates a cost function based on contextual information in conjunction with appearance matching. This relaxed cost function formulation is minimized using an efficient quadratic programming solver and an approximate solution is obtained by discretizing the relaxed solution. Our approach improves labeling performance compared to other segmentation based recognition approaches. Secondly, we introduce a new problem called object co-labeling where the goal is to jointly annotate multiple images of the same scene which do not have temporal consistency. We present an adaptive framework for joint segmentation and recognition to solve this problem. We propose an objective function that considers not only appearance but also appearance and context consistency across images of the scene. A relaxed form of the cost function is minimized using an efficient quadratic programming solver. Our approach improves labeling performance compared to labeling each image individually. We also show the application of our co-labeling framework to other recognition problems such as label propagation in videos and object recognition in similar scenes. In the third part, we propose a novel general strategy for simultaneous object detection and segmentation. Instead of passively evaluating all object detectors at all possible locations in an image, we develop a divide-and-conquer approach by actively and sequentially evaluating contextual cues related to the query based on the scene and previous evaluations---like playing a ``20 Questions'' game---to decide where to search for the object. Such questions are dynamically selected based on the query, the scene and current observed responses given by object detectors and classifiers. We first present an efficient object search policy based on information gain of asking a question. We formulate the policy in a probabilistic framework that integrates current information and observation to update the model and determine the next most informative action to take next. We further enrich the power and generalization capacity of the Twenty Questions strategy by learning the Twenty Questions policy driven by data. We formulate the problem as a Markov Decision Process and learn a search policy by imitation learning
    corecore