783,595 research outputs found

    Developing a Constructivist Model for Effective Physics Learning

    Get PDF
    The paper considered developing a constructivist model for effective physics teaching. The model is imperative because of the increasing difficulty in learning physics and the resulting poor academic performance in the subject. The paper reviewed two types of constructivism which are the social and cognitive constructivism. Highlights of correlations between the constructivist learning and the authentic learning were revealed. To applying the model to physics learning, it was argued that constructivist teachers should give serious attention to the prior knowledge of the students. This will determine the mode of teacher instruction. The teacher content knowledge and pedagogical knowledge are central to excellent teaching. The paper concludes that physics teacher should promote student interactions and respect student ideas being the kernel of the constructivist learning. Aina, Jacob Kola "Developing a Constructivist Model for Effective Physics Learning" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-1 | Issue-4 , June 201

    Towards characterizing the relationship between students' interest in and their beliefs about physics

    Get PDF
    We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world

    Best Practices for Administering Attitude and Beliefs Surveys

    Full text link
    Physics faculty care about their students learning physics content. In addition, they usually hope that their students will learn some deeper lessons about thinking critically and scientifically. They hope that as a result of taking a physics class, students will come to appreciate physics as a coherent and logical method of understanding the world, and recognize that they can use reason and experimentation to figure things out about the world. Physics education researchers have created several surveys to assess one important aspect of thinking like a physicist: what students believe that learning physics is all about. In this article, we introduce attitudes and beliefs surveys; and give advice on how to choose, administer, and score them in your classes. This article is a companion to Best Practices for Administering Concept Inventories (The Physics Teacher, 2017), which introduces and answers common questions around concept inventories, which are research-based assessments of physics content topics
    corecore