357,492 research outputs found

    Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy

    Full text link
    We review the potential of Astrophotonics, a relatively young field at the interface between photonics and astronomical instrumentation, for spectro-interferometry. We review some fundamental aspects of photonic science that drove the emer- gence of astrophotonics, and highlight the achievements in observational astrophysics. We analyze the prospects for further technological development also considering the potential synergies with other fields of physics (e.g. non-linear optics in condensed matter physics). We also stress the central role of fiber optics in routing and transporting light, delivering complex filters, or interfacing instruments and telescopes, more specifically in the context of a growing usage of adaptive optics.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 21 pages, 10 Figure

    Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front

    Get PDF
    Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 10262810^{26-28} W/cm2^2 in the coming decade, much beyond the current and near future intensity regime 102310^{23} W/cm2^2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications in particular and the possibility of merged reinforcement of high-energy physics and ultraintense laser.Comment: 25 pages. 1 figur

    A Geant4 based engineering tool for Fresnel lenses

    Full text link
    Geant4 is a Monte Carlo radiation transport toolkit that is becoming a tool of generalized application in areas such as high-energy physics, nuclear physics, astroparticle physics, or medical physics. Geant4 provides an optical physics process category, allowing the simulation of the production and propagation of light. Its capabilities are well tailored for the simulation of optics systems namely in cosmic-rays experiments based in the detection of Cherenkov and fluorescence light. The use of Geant4 as an engineering tool for the optics design and simulation of Fresnel lens systems is discussed through a specific example.Comment: 4 pages, 6 figures, Proceedings of the 30th ICRC, International Cosmic Ray Conference 2007, M\'erida, M\'exico, 3-11 July 200

    Many-body physics of a quantum fluid of exciton-polaritons in a semiconductor microcavity

    Full text link
    Some recent results concerning nonlinear optics in semiconductor microcavities are reviewed from the point of view of the many-body physics of an interacting photon gas. Analogies with systems of cold atoms at thermal equilibrium are drawn, and the peculiar behaviours due to the non-equilibrium regime pointed out. The richness of the predicted behaviours shows the potentialities of optical systems for the study of the physics of quantum fluids.Comment: Proceedings of QFS2006 conference to appear on JLT

    Optical-approximation analysis of sidewall-spacing effects on the force between two squares with parallel sidewalls

    Full text link
    Using the ray-optics approximation, we analyze the Casimir force in a two dimensional domain formed by two metallic blocks adjacent to parallel metallic sidewalls, which are separated from the blocks by a finite distance h. For h > 0, the ray-optics approach is not exact because diffraction effects are neglected. Nevertheless, we show that ray optics is able to qualitatively reproduce a surprising effect recently identified in an exact numerical calculation: the force between the blocks varies non-monotonically with h. In this sense, the ray-optics approach captures an essential part of the physics of multi-body interactions in this system, unlike simpler pairwise-interaction approximations such as PFA. Furthermore, by comparison to the exact numerical results, we are able to quantify the impact of diffraction on Casimir forces in this geometry
    corecore