1,081,267 research outputs found
Graphene: from materials science to particle physics
Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon
allotrope, has generated great interest and spurred research activity from
materials science to particle physics and vice versa. In particular, graphene
has been found to exhibit outstanding electronic and mechanical properties, as
well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a
fractional quantum Hall effect when freely suspended and immersed in a magnetic
field. One of the most intriguing puzzles of graphene involves the
low-temperature conductivity at zero density, a central issue in the design of
graphene-based nanoelectronic components. While suspended graphene experiments
have shown a trend reminiscent of semiconductors, with rising resistivity at
low temperatures, most theories predict a constant or even decreasing
resistivity. However, lattice field theory calculations have revealed that
suspended graphene is at or near the critical coupling for excitonic gap
formation due to strong Coulomb interactions, which suggests a simple and
straightforward explanation for the experimental data. In this contribution we
review the current status of the field with emphasis on the issue of gap
formation, and outline recent progress and future points of contact between
condensed matter physics and Lattice QCD.Comment: 14 pages, 6 figures. Plenary talk given at the XXVIII International
Symposium on Lattice Field Theory (Lattice 2010), June 14-19, 2010,
Villasimius, Sardinia, Ital
Development of user guidelines for ECAS display design. Volume 2: Tasks 9 and 10
Lay-oriented speakers aids, articles, a booklet, and a press kit were developed to inform the press and the general public with background information on the space transportation system, Spacelab, and Spacelab 1 experiments. Educational materials relating to solar-terrestrial physics and its potential benefits to mankind were also written. A basic network for distributing audiovisual and printed materials to regional secondary schools and universities was developed. Suggested scripts to be used with visual aids describing materials science and technology and astronomy and solar physics are presented
Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology
The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
Here, we review the basic concepts and applications of the
phase-field-crystal (PFC) method, which is one of the latest simulation
methodologies in materials science for problems, where atomic- and microscales
are tightly coupled. The PFC method operates on atomic length and diffusive
time scales, and thus constitutes a computationally efficient alternative to
molecular simulation methods. Its intense development in materials science
started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88
(2002), p. 245701]. Since these initial studies, dynamical density functional
theory and thermodynamic concepts have been linked to the PFC approach to serve
as further theoretical fundaments for the latter. In this review, we summarize
these methodological development steps as well as the most important
applications of the PFC method with a special focus on the interaction of
development steps taken in hard and soft matter physics, respectively. Doing
so, we hope to present today's state of the art in PFC modelling as well as the
potential, which might still arise from this method in physics and materials
science in the nearby future.Comment: 95 pages, 48 figure
Research on the physics of solid materials semiannual status report no. 12, 1 nov. 1964 - 30 apr. 1965
Solid state physics, physical metallurgy, and chemistry of solids - development of advanced crystal growing facilities for materials science and solid state physics group
Electronic properties and applications of MXenes: a theoretical review
Recent chemical exfoliation of layered MAX phase compounds to novel
two-dimensional transition metal carbides and nitrides, so called MXenes, has
brought new opportunity to materials science and technology. This review
highlights the computational attempts that have been made to understand the
physics and chemistry of this very promising family of advanced two-dimensional
materials, and to exploit their novel and exceptional properties for electronic
and energy harvesting applications.Comment: 12 figure
NMscatt: a program for calculating inelastic scattering from large biomolecular systems using classical force-field simulations
Computational tools for normal mode analysis, which are widely used in
physics and materials science problems, are designed here in a single package
called NMscatt (Normal Modes & scattering) that allows arbitrarily large
systems to be handled. The package allows inelastic neutron and X-ray
scattering observables to be calculated, allowing comparison with experimental
data produced at large scale facilities. Various simplification schemes are
presented for analysing displacement vectors, which are otherwise too
complicated to understand in very large systems.Comment: 13 pages, 5 figures, preprint submitted to Computer Physics
Communication
Density Functional Theory of Epitaxial Growth of Metals
This chapter starts with a summary of the atomistic processes that occur
during epitaxy. We then introduce density functional theory (DFT) and describe
its implementation into state-of-the-art computations of complex processes in
condensed matter physics and materials science. In particular we discuss how
DFT can be used to calculate parameters of microscopic processes such as
adsorption and surface diffusion, and how they can be used to study the
macroscopic time and length scales of realistic growth conditions. This meso-
and macroscopic regime is described by the ab initio kinetic Monte Carlo
approach. We discuss several specific theoretical studies that highlight the
importance of the different diffusion mechanisms at step edges, the role of
surfactants, and the influence of surface stress. The presented results are for
specific materials (namely silver and aluminum), but they are explained in
simple physical pictures suggesting that they also hold for other systems.Comment: 55 pages, 20 figures, to be published "Growth of Ultrathin Epitaxial
Layers", The Chemical Physics of Soild Surfaces, Vol. 8, Eds D. A. King and
D. P. Woodruff (Elsevier Science, Amsterdam, 1997
IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science
"Science gateway" (SG) ideology means a user-friendly intuitive interface
between scientists (or scientific communities) and different software
components + various distributed computing infrastructures (DCIs) (like grids,
clouds, clusters), where researchers can focus on their scientific goals and
less on peculiarities of software/DCI. "IMP Science Gateway Portal"
(http://scigate.imp.kiev.ua) for complex workflow management and integration of
distributed computing resources (like clusters, service grids, desktop grids,
clouds) is presented. It is created on the basis of WS-PGRADE and gUSE
technologies, where WS-PGRADE is designed for science workflow operation and
gUSE - for smooth integration of available resources for parallel and
distributed computing in various heterogeneous distributed computing
infrastructures (DCI). The typical scientific workflows with possible scenarios
of its preparation and usage are presented. Several typical use cases for these
science applications (scientific workflows) are considered for molecular
dynamics (MD) simulations of complex behavior of various nanostructures
(nanoindentation of graphene layers, defect system relaxation in metal
nanocrystals, thermal stability of boron nitride nanotubes, etc.). The user
experience is analyzed in the context of its practical applications for MD
simulations in materials science, physics and nanotechnologies with available
heterogeneous DCIs. In conclusion, the "science gateway" approach - workflow
manager (like WS-PGRADE) + DCI resources manager (like gUSE)- gives opportunity
to use the SG portal (like "IMP Science Gateway Portal") in a very promising
way, namely, as a hub of various virtual experimental labs (different software
components + various requirements to resources) in the context of its practical
MD applications in materials science, physics, chemistry, biology, and
nanotechnologies.Comment: 6 pages, 5 figures, 3 tables; 6th International Workshop on Science
Gateways, IWSG-2014 (Dublin, Ireland, 3-5 June, 2014). arXiv admin note:
substantial text overlap with arXiv:1404.545
- …
