313,092 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Techniques for Enhanced Physical-Layer Security

    Full text link
    Information-theoretic security--widely accepted as the strictest notion of security--relies on channel coding techniques that exploit the inherent randomness of propagation channels to strengthen the security of communications systems. Within this paradigm, we explore strategies to improve secure connectivity in a wireless network. We first consider the intrinsically secure communications graph (iS-graph), a convenient representation of the links that can be established with information-theoretic security on a large-scale network. We then propose and characterize two techniques--sectorized transmission and eavesdropper neutralization--which are shown to dramatically enhance the connectivity of the iS-graph.Comment: Pre-print, IEEE Global Telecommunications Conference (GLOBECOM'10), Miami, FL, Dec. 201

    Quantum Security for the Physical Layer

    Full text link
    The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.Comment: 7 pages, 6 figure

    UAV Swarm-Enabled Aerial CoMP: A Physical Layer Security Perspective

    Get PDF
    Unlike aerial base station enabled by a single unmanned aerial vehicle (UAV), aerial coordinated multiple points (CoMP) can be enabled by a UAV swarm. In this case, the management of multiple UAVs is important. This paper considers the power allocation strategy for a UAV swarm-enabled aerial network to enhance the physical layer security of the downlink transmission, where an eavesdropper moves following the trajectory of the swarm for better eavesdropping. Unlike existing works, we use only the large-scale channel state information (CSI) and maximize the secrecy throughput in a whole-trajectory-oriented manner. The overall transmission energy constraint on each UAV and the total transmission duration for all the legitimate users are considered. The non-convexity of the formulated problem is solved by using max-min optimization with iteration. Both the transmission power of desired signals and artificial noise (AN) are derived iteratively. Simulation results are presented to validate the effectiveness of our proposed power allocation algorithm and to show the advantage of aerial CoMP by using only the large-scale CSI
    • …
    corecore