187 research outputs found

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    Full Diversity Unitary Precoded Integer-Forcing

    Full text link
    We consider a point-to-point flat-fading MIMO channel with channel state information known both at transmitter and receiver. At the transmitter side, a lattice coding scheme is employed at each antenna to map information symbols to independent lattice codewords drawn from the same codebook. Each lattice codeword is then multiplied by a unitary precoding matrix P{\bf P} and sent through the channel. At the receiver side, an integer-forcing (IF) linear receiver is employed. We denote this scheme as unitary precoded integer-forcing (UPIF). We show that UPIF can achieve full-diversity under a constraint based on the shortest vector of a lattice generated by the precoding matrix P{\bf P}. This constraint and a simpler version of that provide design criteria for two types of full-diversity UPIF. Type I uses a unitary precoder that adapts at each channel realization. Type II uses a unitary precoder, which remains fixed for all channel realizations. We then verify our results by computer simulations in 2×22\times2, and 4×44\times 4 MIMO using different QAM constellations. We finally show that the proposed Type II UPIF outperform the MIMO precoding X-codes at high data rates.Comment: 12 pages, 8 figures, to appear in IEEE-TW

    Lattices from Codes for Harnessing Interference: An Overview and Generalizations

    Full text link
    In this paper, using compute-and-forward as an example, we provide an overview of constructions of lattices from codes that possess the right algebraic structures for harnessing interference. This includes Construction A, Construction D, and Construction πA\pi_A (previously called product construction) recently proposed by the authors. We then discuss two generalizations where the first one is a general construction of lattices named Construction πD\pi_D subsuming the above three constructions as special cases and the second one is to go beyond principal ideal domains and build lattices over algebraic integers

    Asymmetric Compute-and-Forward with CSIT

    Get PDF
    We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate region. This idea is applicable to all systems which use the compute-and-forward technique and can be arbitrarily better than the regular scheme in some settings.Comment: in International Zurich Seminar on Communications, 2014; minor update on example

    Efficient Integer Coefficient Search for Compute-and-Forward

    Full text link
    Integer coefficient selection is an important decoding step in the implementation of compute-and-forward (C-F) relaying scheme. Choosing the optimal integer coefficients in C-F has been shown to be a shortest vector problem (SVP) which is known to be NP hard in its general form. Exhaustive search of the integer coefficients is only feasible in complexity for small number of users while approximation algorithms such as Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm only find a vector within an exponential factor of the shortest vector. An optimal deterministic algorithm was proposed for C-F by Sahraei and Gastpar specifically for the real valued channel case. In this paper, we adapt their idea to the complex valued channel and propose an efficient search algorithm to find the optimal integer coefficient vectors over the ring of Gaussian integers and the ring of Eisenstein integers. A second algorithm is then proposed that generalises our search algorithm to the Integer-Forcing MIMO C-F receiver. Performance and efficiency of the proposed algorithms are evaluated through simulations and theoretical analysis.Comment: IEEE Transactions on Wireless Communications, to appear.12 pages, 8 figure

    Robust Successive Compute-and-Forward over Multi-User Multi-Relay Networks

    Full text link
    This paper develops efficient Compute-and-forward (CMF) schemes in multi-user multi-relay networks. To solve the rank failure problem in CMF setups and to achieve full diversity of the network, we introduce two novel CMF methods, namely, extended CMF and successive CMF. The former, having low complexity, is based on recovering multiple equations at relays. The latter utilizes successive interference cancellation (SIC) to enhance the system performance compared to the state-of-the-art schemes. Both methods can be utilized in a network with different number of users, relays, and relay antennas, with negligible feedback channels or signaling overhead. We derive new concise formulations and explicit framework for the successive CMF method as well as an approach to reduce its computational complexity. Our theoretical analysis and computer simulations demonstrate the superior performance of our proposed CMF methods over the conventional schemes. Furthermore, based on our simulation results, the successive CMF method yields additional signal-to-noise ratio gains and shows considerable robustness against channel estimation error, compared to the extended CMF method.Comment: 44 pages, 10 figures, 1 table, accepted to be published in IEEE Trans. on Vehicular Tec
    • …
    corecore