458 research outputs found

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    ?????? ?????? ???????????? ?????? ???????????? ??????????????? ?????????????????? ??? ???????????????

    Get PDF
    Department of Electrical EngineeringA Sensor system is advanced along sensor technologies are developed. The performance improvement of sensor system can be expected by using the internet of things (IoT) communication technology and artificial neural network (ANN) for data processing and computation. Sensors or systems exchanged the data through this wireless connectivity, and various systems and applications are possible to implement by utilizing the advanced technologies. And the collected data is computed using by the ANN and the efficiency of system can be also improved. Gas monitoring system is widely need from the daily life to hazardous workplace. Harmful gas can cause a respiratory disease and some gas include cancer-causing component. Even though it may cause dangerous situation due to explosion. There are various kinds of hazardous gas and its characteristics that effect on human body are different each gas. The optimal design of gas monitoring system is necessary due to each gas has different criteria such as the permissible concentration and exposure time. Therefore, in this thesis, conventional sensor system configuration, operation, and limitation are described and gas monitoring system with wireless connectivity and neural network is proposed to improve the overall efficiency. As I already mentioned above, dangerous concentration and permissible exposure time are different depending on gas types. During the gas monitoring, gas concentration is lower than a permissible level in most of case. Thus, the gas monitoring is enough with low resolution for saving the power consumption in this situation. When detecting the gas, the high-resolution is required for the accurate concentration detecting. If the gas type is varied in the above situation, the amount of calculation increases exponentially. Therefore, in the conventional systems, target specifications are decided by the highest requirement in the whole situation, and it occurs increasing the cost and complexity of readout integrated circuit (ROIC) and system. In order to optimize the specification, the ANN and adaptive ROIC are utilized to compute the complex situation and huge data processing. Thus, gas monitoring system with learning-based algorithm is proposed to improve its efficiency. In order to optimize the operation depending on situation, dual-mode ROIC that monitoring mode and precision mode is implemented. If the present gas concentration is decided to safe, monitoring mode is operated with minimal detecting accuracy for saving the power consumption. The precision mode is switched when the high-resolution or hazardous situation are detected. The additional calibration circuits are necessary for the high-resolution implementation, and it has more power consumption and design complexity. A high-resolution Analog-to-digital converter (ADC) is kind of challenges to design with efficiency way. Therefore, in order to reduce the effective resolution of ADC and power consumption, zooming correlated double sampling (CDS) circuit and prediction successive approximation register (SAR) ADC are proposed for performance optimization into precision mode. A Microelectromechanical systems (MEMS) based gas sensor has high-integration and high sensitivity, but the calibration is needed to improve its low selectivity. Conventionally, principle component analysis (PCA) is used to classify the gas types, but this method has lower accuracy in some case and hard to verify in real-time. Alternatively, ANN is powerful algorithm to accurate sensing through collecting the data and training procedure and it can be verified the gas type and concentration in real-time. ROIC was fabricated in complementary metal-oxide-semiconductor (CMOS) 180-nm process and then the efficiency of the system with adaptive ROIC and ANN algorithm was experimentally verified into gas monitoring system prototype. Also, Bluetooth supports wireless connectivity to PC and mobile and pattern recognition and prediction code for SAR ADC is performed in MATLAB. Real-time gas information is monitored by Android-based application in smartphone. The dual-mode operation, optimization of performance and prediction code are adjusted with microcontroller unit (MCU). Monitoring mode is improved by x2.6 of figure-of-merits (FoM) that compared with previous resistive interface.clos

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces
    corecore