16 research outputs found

    On the Design of Secure Full-Duplex Multiuser Systems under User Grouping Method

    Full text link
    Consider a full-duplex (FD) multiuser system where an FD base station (BS) is designed to simultaneously serve both downlink users and uplink users in the presence of half-duplex eavesdroppers (Eves). Our problem is to maximize the minimum secrecy rate (SR) among all legitimate users by proposing a novel user grouping method, where information signals at the FD-BS are accompanied with artificial noise to degrade the Eves' channel. The SR problem has a highly nonconcave and nonsmooth objective, subject to nonconvex constraints due to coupling between the optimization variables. Nevertheless, we develop a path-following low-complexity algorithm, which invokes only a simple convex program of moderate dimensions at each iteration. We show that our path-following algorithm guarantees convergence at least to a local optima. The numerical results demonstrate the merit of our proposed approach compared to existing well-known ones, i.e., conventional FD and nonorthogonal multiple access.Comment: 6 pages, 3 figure

    Achieving Covert Wireless Communications Using a Full-Duplex Receiver

    Full text link
    Covert communications hide the transmission of a message from a watchful adversary while ensuring a certain decoding performance at the receiver. In this work, a wireless communication system under fading channels is considered where covertness is achieved by using a full-duplex (FD) receiver. More precisely, the receiver of covert information generates artificial noise with a varying power causing uncertainty at the adversary, Willie, regarding the statistics of the received signals. Given that Willie's optimal detector is a threshold test on the received power, we derive a closed-form expression for the optimal detection performance of Willie averaged over the fading channel realizations. Furthermore, we provide guidelines for the optimal choice of artificial noise power range, and the optimal transmission probability of covert information to maximize the detection errors at Willie. Our analysis shows that the transmission of artificial noise, although causes self-interference, provides the opportunity of achieving covertness but its transmit power levels need to be managed carefully. We also demonstrate that the prior transmission probability of 0.5 is not always the best choice for achieving the maximum possible covertness, when the covert transmission probability and artificial noise power can be jointly optimized.Comment: 13 pages, 11 figures, Accepted for publication in IEEE Transactions on Wireless Communication

    Beamforming Optimization for Full-Duplex Wireless-powered MIMO Systems

    Get PDF
    We propose techniques for optimizing transmit beamforming in a full-duplex multiple-input-multiple-output (MIMO) wireless-powered communication system, which consists of two phases. In the first phase, the wireless-powered mobile station (MS) harvests energy using signals from the base station (BS), whereas in the second phase, both MS and BS communicate to each other in a full-duplex mode. When complete instantaneous channel state information (CSI) is available, the BS beamformer and the time-splitting (TS) parameter of energy harvesting are jointly optimized in order to obtain the BS-MS rate region. The joint optimization problem is non-convex, however, a computationally efficient optimum technique, based upon semidefinite relaxation and line-search, is proposed to solve the problem. A sub-optimum zero-forcing approach is also proposed, in which a closed-form solution of TS parameter is obtained. When only second-order statistics of transmit CSI is available, we propose to maximize the ergodic information rate at the MS, while maintaining the outage probability at the BS below a certain threshold. An upper bound for the outage probability is also derived and an approximate convex optimization framework is proposed for efficiently solving the underlying non-convex problem. Simulations demonstrate the advantages of the proposed methods over the sub-optimum and half-duplex ones.Comment: 14 pages, accepte

    Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy

    Full text link
    This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their information receptions, and letting the other receivers work in the half-duplex mode just receiving their desired signals. The objective of this paper is to choose properly the fraction of FD receivers for achieving the optimal network security performance. Both accurate expressions and tractable approximations for the connection outage probability and the secrecy outage probability of an arbitrary legitimate link are derived, based on which the area secure link number, network-wide secrecy throughput and network-wide secrecy energy efficiency are optimized respectively. Various insights into the optimal fraction are further developed and its closed-form expressions are also derived under perfect self-interference cancellation or in a dense network. It is concluded that the fraction of FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the proposed strategy can significantly enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE Transactions on Wireless Communications, 201

    Secret Channel Training to Enhance Physical Layer Security With a Full-Duplex Receiver

    Get PDF
    This work proposes a new channel training (CT) scheme for a full-duplex receiver to enhance physical layer security. Equipped with NB full-duplex antennas, the receiver simultaneously receives the information signal and transmits artificial noise (AN). In order to reduce the non-cancellable self-interference due to the transmitted AN, the receiver has to estimate the self-interference channel prior to the data communication phase. In the proposed CT scheme, the receiver transmits a limited number of pilot symbols which are known only to itself. Such a secret CT scheme prevents an eavesdropper from estimating the jamming channel from the receiver to the eavesdropper, hence effectively degrading the eavesdropping capability. We analytically examine the connection probability (i.e., the probability of the data being successfully decoded by the receiver) of the legitimate channel and the secrecy outage probability due to eavesdropping for the proposed secret CT scheme. Based on our analysis, the optimal power allocation between CT and data/AN transmission at the legitimate transmitter/receiver is determined. Our examination shows that the newly proposed secret CT scheme significantly outperforms the non-secret CT scheme that uses publicly known pilots when the number of antennas at the eavesdropper is larger than one.ARC Discovery Projects Grant DP15010390
    corecore